Categories
Writers Solution

Determine if the sequence is monotonic (or is monotonic after some finite value of n).

Work the problems below as directed. Show all work. Clearly mark your final answers. Use exact values unless the problem specifically directs you to round. Simplify as much as possible. Partial credit is possible, but solutions without work will not receive full credit. Part 1: These questions you will submit answers to in Canvas. Show all work and submit the work with Part 2 of the exam. But you must submit the answers in Canvas to receive credit. Each question/answer will be listed separately. The Canvas question will refer to the number/part to indicate where you should submit which answer. The questions will appear in order (in case there is an inadverten t typo). Correct answers will receive full credit with or without work in this section, but if you don’t submit work and clearly label your answers, you won’t be able to challenge any scoring decisions for making an error of any kind. 1. Find the limit of th e infinite series. (10 points) 2. Determine the convergence or divergence of each series. (6 points each) a. b. ∑ 1 (− 1)4/5 ∞ = 2 c. d. ( )   = + 1 2 4 n n n   = − 1n n ne   = − 1 3 1 4 1 n n   = + − − 1 2 5 2 3 5 n n n n e. f. g. 3. For the series , if the series converges, does it converge conditionally or absolutely? Find the partial sum of the first six terms and then state the maximum error on the sum at that term. (16 points) 4. Find N such that for the convergent series. (10 points) 5. Use the first four terms of the Taylor series to approximate . (10 points) ( )   = + − 1 1 ln )1 ( n n n   = +     − 1 2 1 3 2 )1 ( n n n n n n n n 2 1 1 3 2   =       + − 1 2 1 ( 1) n n n +  = −  0.001 NR  4 1 1 n n  =  − 1 0 2dx e x 6. For the sequence below. i) Determine if the sequence is monotonic (or is monotonic after some finite value of n). You may determine this graphically or by calculating derivatives. ii) Determine the bounds (above and below of the sequence). iii) Can you apply the bounded & monotonic theorem for convergence to this sequence? iv) Does this sequence converge by another theorem? If so, which one? v) If the sequence converges, what does it converge to? ( 20 points) Part 2: In this section you will record your answers on paper along with your work. After scanning, submit them to a Canvas dropbox as directed. Th ese questions will be graded by hand. 7. Find an expression for the nth partial sum of . (12 points) 8. For each of the series in #2, state the test used to determine convergence. (9 points each) a. b. ∑ 1 (−1)4/5 ∞ =2 c. /2n na ne − = ( )   = + 1 2 4 n n n   = − 1n n ne   = − 1 3 1 4 1 n n d. e. f. g. 9. Determine the radius of convergence for the series . State the interval of convergence and clearly indicate whether it is open, closed or half -open. (10 points)   = + − − 1 2 5 2 3 5 n n n n ( )   = + − 1 1 ln )1 ( n n n   = +     − 1 2 1 3 2 )1 ( n n n n n n n n 2 1 1 3 2   =       + −   = + + − 0 1 )1 ( )1 ( n n n x n 10. Find the nth Taylor polynomial centered at the given c. Use the included table to show work.

(15 points) n n! 0 1 2 3 4 5 6 11. Find a power series for the functions using the geometric series method. (20 points each) a. b. ( ) cos 4 , 6, 2 g x x n c  = = = () ()nfx () ()nfc () n xc− () () () !

n n fc xc n − ()nPx = 3 () 21 fx x = − 3 24 7 () (1 3 ) x fx x = +

Assignment Status: Solved By Our Experts.

WE HAVE DONE THIS QUESTION BEFORE, WE CAN ALSO DO IT FOR YOU

WE OFFER THE BEST PAPER WRITING SERVICES on Determine if the sequence is monotonic (or is monotonic after some finite value of n).

USA, AUS, CA & UK PhD Writers

Categories
Writers Solution

finite element method for civil engineering

You are a structural engineer working in a housing project that is building three storey bungalow units. A typical main frame ABCDEFGH that the architect is proposing is provided in FIGURE Q1. The architect would like to keep the structural elements to a minimum and hence has proposed that it must consist of six columns (AB, BC, CD, EF, FG and GH) of equal length and three beams (BG, CF and DE), also of equal length. The height of the columns, LCC = 3.05 m, the length of the beams, LBB = 5.4m, factored imposed load of FBG kN/m = 3.25 on beam BG, factored imposed load of FCF,DE kN/m = 4.3 on beams CF and DE and a point load of X kN = -55.0  due to wind at beam column junctions B, C and D. As it is easiest to transport to the site, the architect decided to construct the frame from steel and want to fabricate all connections as fixed connections.

1. Your technical director, who believes in optimisation of structures for weight (least material), has asked you to size all of the members of the frame such that no members exceed their yield stress while minimizing the weight of the whole structure. She asked you to use the simple finite element program that you use in the office. Use necessary simplifications backed by solid reasoning and choose only standard steel cross-sections.

2. While you are working on this project at home, your father, who is a retired earthquake specialist, is concerned that you are not considering any dynamic loading. To allay these fears, you have decided to perform a dynamic analysis, the first step of which you have decided will be the computation of mode shapes and their associated frequencies. Compute the frequencies of the first 5 mode shapes and their associated mode shapes by modifying the simple program from QUESTION 1.

3. Once you presented your initial design of the frame, a senior engineer has raised some concerns about the simple beam column finite element solution that you have used. With justification, evaluate the validity of the solution adopted with respect to the structural stability, material behaviour and magnitude of the final deflections.

GET SOLUTION FOR THIS ASSIGNMENT, Get Impressive Scores in Your Class

CLICK HERE TO MAKE YOUR ORDER

TO BE RE-WRITTEN FROM THE SCRATCH

GET SOLUTION FOR THIS ASSIGNMENT

CLICK HERE TO MAKE YOUR ORDER

TO BE RE-WRITTEN FROM THE SCRATCH

NO PLAGIARISM

  • Original and non-plagiarized custom papers- Our writers develop their writing from scratch unless you request them to rewrite, edit or proofread your paper.
  • Timely Deliveryprimewritersbay.com believes in beating the deadlines that our customers have imposed because we understand how important it is.
  • Customer satisfaction- Customer satisfaction. We have an outstanding customer care team that is always ready and willing to listen to you, collect your instructions and make sure that your custom writing needs are satisfied
  • Confidential- It’s secure to place an order at primewritersbay.com We won’t reveal your private information to anyone else.
  • Writing services provided by experts- Looking for expert essay writers, thesis and dissertation writers, personal statement writers, or writers to provide any other kind of custom writing service?
  • Enjoy Please Note-You have come to the most reliable academic writing site that will sort all assignments that that you could be having. We write essays, research papers, term papers, research proposals. finite element method for civil engineering

Get Professionally Written Papers From The Writing Experts 

Green Order Now Button PNG Image | Transparent PNG Free Download on SeekPNG
Categories
Writers Solution

Principals of 3D – Design Analysis and to carry out Finite Element Analysis

Computing, Engineering & Media (CEM)
Coursework 
Product Design and Development
Coursework 1 – Design Analysis
PART-A
i)The aims of the assignment are to understand the principals of 3D – Design Analysis and to carry out Finite Element Analysis on Simple Plate of size to be individually determined Y is between 120mm and 200mm inclusive, Z = Y/2; X = Y/2; C=Z/2 and D = 20% to 40% of Z, See figure below. The plate has uniform thickness of Z/4. (Please Ensure Individuality) Further aim is understanding the effects of different feature in a component and mesh density.
The objective is to produce a Simple Plate in the design package such as Creo6 and transferring the model into an Analysis package as and carrying out simulation of tensile stress. Initially the FEA package will Creo Simulate and then Ansys
Methodology requires applying fixed boundary conditions at one end and force/presser at the other end of the plate. You are to perform static stress analysis with linear material models on a classical problem by testing for different mesh densities.
Create the 3D design model in PTC Creo6

Attempt various mesh sizes starting from course to fine.
Initial Conditions: Fixed Boundary Conditions to be applied to one surface of the plate and a pressure to equivalent force of 40KN to be applied on the opposite surface.
Material to be used is Steel Low carbon Steel as listed in the materials library initially
Compare analysis results with classical stress calculations.
(ii) Further analysis can be carried out on a different size holes and section, such as a plate with Semi-circle notch (see below) on opposite edges and Square hole and also, different material and applying the same force/pressure to smaller area of 25% of the length Z in the middle. This will enable you to understand the effects of different type of features/parameters in a component
(iii) Discuss the methods for verifying results using classical formulae’s
Calculator for Stress Concentration Factor. Kt – FYI — https://www.efatigue.com/
? Rectangular Bars (https://www.efatigue.com/constantamplitude/stressconcentration/#a)
? Plate with a Circular Symmetric Hole
? Enter the value for ‘W’ width and Value for ‘d) Diameter ? Click on ‘Calculate Kt Value’
? Use the value to calculate total stress. Total Stress = Analysis Stress x Kt

(iv) Source and evaluate an actual product which has a component that is under tensile loading. Apply this type of analysis to a component and discuss the results.

This will develop your ability to understand the application of design packages, the effects of mesh density and to formulate decisions based on results obtained
Marks will be awarded for the following: –
Describing and explaining why the steps taken to produce the design and to carryout analysis with relevant printouts.
Discussing the results obtained and exploring variations and making recommendations. Evaluating and reporting on the effect of mesh density on stress and comparing it against the calculated vale using stress concentration factor.
Evaluating the effects of different diameters, together with different type of a hole for example square & notch and materials.
Verifying the results using classical methods.

Rectangular Bar with Opposite Edge Notches
Part B
The aim of the assignment is to develop your ability to model and analyze a component using design tools. The objective is to produce a design using a CAD package and to carry out Finite Element Analysis on an everyday engineering component. The product to consider is a common Bicycle Crank. Initial Dimensions for the Crank are as shown below.
Crank is modelled in PTC Creo 3D design package and can be saved as a *.PRT file.
CAD Data can be saved a neutral exchange file *. STEP is imported and analyzed in third party Simulation FEA package such as Ansys. Some third party can read *.PRT files directly and PTC Creo has integrated FEA package ‘Simulate’.

Dimensions for the Crank with Plain Holes
– Examples of Other Profiles for consideration for comparison are given as follows

Spigot – Parallel Fixing Profile Dimensions of the Spline

Spigot – Angled Fixing Profile Dimensions of the Spline

Another Example of Types of Fixing the Crank using a Flat Face
– Some other fixing could be just a square instead of a circle
This will further enhance the experience of using CAD and analysis by creating a model of bicycle crank and analyzing in Simulate/Ansys. This will highlight the benefits that can be gained from using design tools in the design process.
Conditions: Fixed Boundary Conditions to be applied to the surface on the 12mm hole in the R20 Boss initially.
Force of 1200N to be applied to the inner Nodes/Surface on the 10mm diameter hole in the 20mm boss on the Right-Hand Side
Material to be used is Medium carbon Steel listed in the materials library.
Design Safety Factor to consider is 4:1 at the Radii
Marks will be awarded for the following
Discuss the steps taken to produce the design and analysis with relevant printouts.
Consider the effects of Fixed Boundary Conditions and the Force applied at Nodal points or the Surface.
Discuss the results obtained and make recommendations.
Discuss the results obtained and explore variations and make recommendations. Evaluate and report on the effect of mesh density and the optimized shape of the Crank considering the effects of different radius and thickness as highlighted above on the Crank body.
Consider other analysis model such as an assembly with a Spigot in the Crank.
Verify the results using classical methods
Compare and Comment on the design of different type of fixing at the Crank and the spigot. For example, a key or tapered spigot or as per example given in the handout
Report Quality
Interim formative feedback during week 8.
Part C
Bending Stress Analysis of structural Section – Such as a Universal Beam – I-Beam. One Method of reducing weight of an I- Section and increase the load carrying capacity is to cut in Hexagon profile and weld the 2- sections as shown below.
Carryout Bending Stress on standard I section and a modified section with Beam of Appropriate length It is possible to modify the section provided on blackboard but use your own dimension that can be obtained from suppliers online.
For 1st analysis consider it as Cantilever with force 10KN; consider the effects of temperatures in extreme conditions.
Attempt Modal Analysis.
For 2nd Analysis consider it as a Simply Supported Beam.

(a)
(b) (c)
Part D – Bell Crank for Formula Student car in the workshop is given.
Look at the assembled components on the Formula car in the Mechanical Workshop and evaluate and discuss the loading conditions. Model the part with appropriate conditions and carry out analysis to determine the optimized the design with a safety factor of 4:1
Assemble pins in the holes and carry out further analysis for comparison. Look at the new design on the current car and compare.
Bell crank for Formula Student Car
Part E
Discuss types of FEA methods and the benefits of applying design analysis in the Product Life Cycle, use examples to illustrate your discussion. Discuss also the functional differences between Ansys and Creo Simulate.
Report Quality
Completed hardcopy of the report to be handed into CEMAC student advice Centre in Gateway House by 17th January 2020
Coursework 1 – Product Design Analysis (ENGD2051)
Assessment Sheet
Name:______________________________________
Marks will be awarded as per the student’s Handbook
Part- A
(i) Describe the steps taken to produce the design and to carryout analysis with relevant printouts.
Discuss the results obtained and explore variations and make recommendations. Evaluate and report on the effect of mesh density and compare against the stress concentration factor. Analyses of the effect of different diameters and materials can also be considered. Consider the effects of Fixed Boundary Conditions and the Force applied at Nodal points or, edge or on the Surface.
Test for the effect of applying the same pressure in smaller area of 25% of the length ‘Z’ 20%
(ii) Compare the effects of different features on stress. Analysis model such as Plate with a Square Hole and Semi-Circle Notches– Discuss the Kt factor and the stress values compare to circle 10%
(iii) Discuss the methods for verifying results using classical formulae’s 5%
(iv) Analyze a component from an actual product which is under tensile loading in operation and discuss the results. 10%
Part B – Carry out analysis and Discuss the results obtained and explore variations of bicycle crank feature and consider the factor of safety. Evaluate and report on the effect of mesh density and the optimized shape of the bicycle Crank covering the effect of different radius as highlighted above and thickness of the crank body. Consider the effects of Fixed Boundary Conditions and the type of Force Applied (Nodal points or, edge or Surface)
Consider other analysis model such as Spigot assembled to the crank for comparison.
Compare and Comment on the design of different type of fixing at the Crank and the spigot. For example, a key or tapered spigot or as per examples given in the handout. Comment on the results. 25%
Part C Evaluation of Universal Beam. Bending stress standard and modified, possible thermal, and modal analysis. 10%
Part D –
Bell Crank for Formula Student car in the workshop is given.
Look at the assembled components and discuss the loading conditions. Model the part with appropriate conditions and carry out analysis to determine the optimized the design with a safety factor of 4:1. Assemble pins in the holes and carry out further analysis for comparison. Look at the current design on the car and compare. 20%

Part E
Discuss types of FEA methods and the benefits of applying design analysis in the Product Life Cycle, use examples to illustrate your discussion. Also, discuss the functional differences between Ansys and Creo Simulate 5%

Report Quality
http://www.roymech.co.uk/Useful_Tables/Sections/steel_section_index.htm
http://www.pvrdirect.co.uk/productinfo.aspx?catref=SP1236&incvat&gclid=CLLNq4-esMkCFYvnwgod3V8AkQ