Social and Racial Problems Presentation (a mid-point program assessment) will be used to measure students’ ability to conduct and present content related to a social or racial problem giving attention to the content knowledge and skills below.
Identify the history of the problem. The candidate provides a detailed description of the social problem.
Discuss how social and racial stratification exacerbate (worsen) the problem.
Compile secondary research in a review of literature on the problem.
Compose recommendations on how to resolve or respond to the problem.
Draft an APA formatted reference list.
Compile information into a cohesive PowerPoint Presentation.
Part I – Required
Write a 5-page paper that is double-spaced (excluding cover and reference pages). You will select a racial or social issue that has affected your community over time (you may select an issue from chapter 12 or 13). In summary, select the problem and discuss its historical background, discuss how racial/social stratification has intensified the problem in your community, and provide recommendation(s) on how to solve the problem.
Use basic, secondary research skills to examine the history of a social and/or racial problem.
Discuss how social and racial stratification intensify the social and/or racial problem.
Synthesize recent and relevant secondary research in a review of literature on the social or racial problem (Must include 8-10 reference sources).
Compose recommendations on how to resolve or respond to the problem.
Xu and Lee argue that with demographic changes in Asian and Hispanic populations in the U.S., a multidimensional racial triangulation theory is a more useful analysis of Asians in the U.S. than the more traditional black–white binary model. Do you agree that a multidimensional study of race relations is more effective to understand the demographic makeup of the U.S. currently and in the future? Support your answer with specific details from the article.
******Please see attachment for the article*******
Bonilla-Silva identifies four frames of color-blind racism; briefly explain these four frames. What is your opinion on the usefulness of these four frames to understand issues of racism that persist today?
*******The link of the article 2******** CHAPTER 3
Cite any sources, including assigned readings, according to APA citation guidelines.
Does Socioeconomic Status Account for Racial and Ethnic
Disparities in Childhood Cancer Survival?
Rebecca D. Kehm, PhD 1; Logan G. Spector, PhD 2; Jenny N. Poynter, PhD 2; David M. Vock, PhD 3;
Sean F. Altekruse, PhD 4,5; and Theresa L. Osypuk, SD 1
BACKGROUND: For many childhood cancers, survival is lower among non-Hispanic blacks and Hispanics in comparison with non- Hispanic whites, and this may be attributed to underlying socioeconomic factors. However, prior childhood cancer survival studies
have not formally tested for mediation by socioeconomic status (SES). This study applied mediation methods to quantify the role of SES in racial/ethnic differences in childhood cancer survival. METHODS: This study used population-based cancer survival data from
the Surveillance, Epidemiology, and End Results 18 database for black, white, and Hispanic children who had been diagnosed at the ages of 0 to 19 years in 2000-2011 (n 531,866). Black-white and Hispanic-white mortality hazard ratios and 95% confidence intervals, adjusted for age, sex, and stage at diagnosis, were estimated. The inverse odds weighting method was used to test for mediation by
SES, which was measured with a validated census-tract composite index. RESULTS: Whites had a significant survival advantage over blacks and Hispanics for several childhood cancers. SES significantly mediated the race/ethnicity–survival association for acute lym-phoblastic leukemia, acute myeloid leukemia, neuroblastoma, and non-Hodgkin lymphoma; SES reduced the original association
between race/ethnicity and survival by 44%, 28%, 49%, and 34%, respectively, for blacks versus whites and by 31%, 73%, 48%, and 28%, respectively, for Hispanics versus whites ((log hazard ratio total effect – log hazard ratio direct effect)/log hazard ratio total
effect). CONCLUSIONS: SES significantly mediates racial/ethnic childhood cancer survival disparities for several cancers. However, the proportion of the total race/ethnicity–survival association explained by SES varies between black-white and Hispanic-white com- parisons for some cancers, and this suggests that mediation by other factors differs across groups.
2018 American Cancer Society .
KEYWORDS: cancer survival, childhood cancer, mediation, racial and ethnic disparities, socioeconomic status.
INTRODUCTION
Despite improvements over the last 4 decades in cancer survival in the US pediatric population, marked racial and ethnic
disparities persist. 1Compared with non-Hispanic white (white) children, non-Hispanic black (black) and Hispanic chil-
dren experience lower survival from many cancers, including leukemias, 2,3 lymphomas, 4,5 central nervous system (CNS)
tumors, 6and extracranial solid tumors. 7-9 The underlying causes of racial/ethnic survival differences are not well under-
stood and may vary by cancer type. As outlined in Figure 1,bothbiologicalandsocioeconomicpathwayshavebeenpro-
posed in the literature. 10,11 Underlying genetic variations associated with ancestry may lead to differences in tumor
biology and pharmacogenetics for some childhood cancers. 10 However, race/ethnicity is a socially constructed taxonomy
that is not synonymous with ancestry. 12 Race/ethnicity is highly correlated with socioeconomic status (SES), especially in
the United States, where embedded, institutionalized racism continues to place racial and ethnic minorities at high risk for
low SES. 13 Because of emerging evidence for a positive association between SES and survival from some childhood can-
cers, 11racial/ethnic survival disparities may also be explained by socioeconomic differences.
Quantifying the relative role of SES in explaining racial/ethnic survival disparities will help to inform practice and
intervention efforts. If SES accounts for racial/ethnic survival differences, then interventions addressing social and eco-
nomic barriers to treatment and care are warranted. However, if SES does not fully account for survival differences by
race/ethnicity, then other social factors (eg, immigration) and biological mechanisms (eg, tumor biology) must be consid-
ered. To date, formal mediation methods have not been used to disentangle racial/ethnic disparities in childhood cancer
Corresponding author: Rebecca D. Kehm, PhD, Division of Epidemiology and Community Health, University of Minnesota School of Public Health, 13,000 South Second Street, West Bank Office Building, Minneapolis, MN 55455; kehmx003@umn.edu
1Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota; 2Division of Epidemiology and Clini- cal Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; 3Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota; 4National Cancer Institute, Bethesda, Maryland; 5Epidemiology Branch, Prevention and Population Sciences Program, Division of Cardio- vascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland.
Seeeditorialonpages thisissue. Additional supporting information may be found in the online version of this article.
DOI: 10.1002/cncr.31560, Received: December 8, 2017; Revised: January 11, 2018; Accepted: February 2, 2018, Published online Online Library (wileyonlinelibrary.com)
Original Article
Cancer 2018;124:40 –
Cancer October 15, 2018 4090
August 20, 2018 in Wiley
90
4097.
VC
3975-8, survival. Therefore, we conducted a mediation analysis
using population-based data, representative of the US
pediatric cancer population, to measure the role of SES in
racial and ethnic childhood cancer survival disparities. We
assessed survival from several childhood cancers to deter-
mine whether mediation by SES differs across cancer
types.
MATERIALS AND METHODS
Study Population
We obtained population-based cancer registry data from
the Surveillance, Epidemiology, and End Results (SEER)
18 database; the Alaska Native Tumor Registry was
excluded. We restricted the analysis to black, Hispanic,
and white cases aged 0 to 19 years with microscopically
confirmed first primary malignancies. Race was assigned
in SEER through medical record abstraction. 14,15 His-
panic ethnicity was assigned in SEER on the basis of self-
report/guardian report of Spanish origin in the medical
record or by a computer algorithm that searches surnames
and maiden names to determine Spanish origin. 14,16 We
assessed race/ethnicity with mutually exclusive categories
(non-Hispanic white, non-Hispanic black, and Hispanic);
individuals of Spanish origin were categorized as His-
panic, regardless of racial background. SES data were
available in SEER for diagnostic years 2000-2012. There-
fore, we restricted our sample to cases diagnosed in 2000-
2011 and followed through December 31, 2012, to allow
for at least 1 year of follow-up. We excluded 45 cases with
in situ tumors, 707 cases with missing/zero months of
follow-up, and 725 cases missing SES data. We assessed
cancers with 200 cases for each racial/ethnic group; they
were classified with the International Classification of
Childhood Cancer, third edition. 17 Our final analytic
sample consisted of 31,866 cases. This study was
approved by the Surveillance Research Program in the
National Cancer Institute’s Division of Cancer Control
and Population Sciences.
Measures
Overall survival was calculated in SEER as months from
the date of the cancer diagnosis to the date of death from
any cause or was censored at the date of last contact.
SES was measured at the neighborhood level (based
on the residential address at the date of the cancer diagno-
sis) with a validated census-tract composite index. 18 As
described in the prior literature, 19 the index was con-
structed through a factor analysis of nationwide 2000
decennial census data and 2005-2009 American Commu-
nity Survey data. 18 Seven indicators of neighborhood
SES, previously specified by Yost et al, 20 were included in
the index: proportion employed in working-class occupa-
tions, proportion aged 16 years or older and unemployed,
aThe stage at diagnosis is N/A for leukemias.bHigher quintiles represent higher SES (ie, Q1 is the lowest SES quintile, and Q5 is the highest SES quintile).
4093 Cancer October 15, 2018
Mediation of Childhood Cancer Survival/Kehm et al race-survival association if the indirect effect of race on
survival operating through SES was statistically signifi-
cant. SES significantly mediated the black-white survival
disparity for acute lymphoblastic leukemia (ALL;
indirect-effect hazard ratio [iHR], 1.17; 95% confidence
interval [CI], 1.07-1.28; P<.01; 44% reduction from
the total effect to the direct effect of the racial disparity in
mortality), AML (iHR, 1.15; 95% CI, 1.03-1.29;
P 5 .01; 28% reduction), and neuroblastoma (iHR, 1.17;
95% CI, 1.03-1.33; P5 .02; 49% reduction). SES was a
marginally significant mediator of the black-white sur-
vival disparity for non-Hodgkin lymphoma (NHL; iHR,
bly, SES significantly mediated both the racial and ethnic
disparities in survival for the same 4 cancers.
Secondary Analyses
Except for NHL, the mediating effect of tract-level SES
was greater than the mediating effect of health insurance
status among black-white and Hispanic-white compari-
sons (Supporting Table 3). For example, the indirect
effect of tract SES on the black-white mortality disparity
for ALL was 1.22 (95% CI, 1.01-1.48; P5 .04; 44%
reduction), whereas the indirect effect of health insurance
was 1.09 (95% CI, 0.94-1.27; P5 .24; 19% reduction).
Among cancers with significant SES indirect effects, SES
was not associated with the stage at diagnosis (Supporting
Table 4). The exclusion of the stage at diagnosis from
IOW models did not lead to notably stronger indirect
SES effects (Supporting Tables 5 and 6).
DISCUSSION
This is the first study to use formal mediation methods to
unpack childhood cancer survival disparities by race/eth-
nicity, and it generated several findings. We replicated
TABLE 2. Mediation by SES of Racial (Black vs White) Survival Disparities Among Childhood Cancer Cases
Aged 0 to 19 Years and Diagnosed in 2000-2011 in the SEER 18 Registries
Cancer Type
Total Effect of Race on Survival Through All Medi- ating Pathways
Direct Effect of Race on Survival After Blocking SES Pathway
Indirect Effect of Race on Survival OperatingThrough SES Pathway Reduction From Total Effect to Direct Effect, % b MortalityHR a 95% CI P Mortality HR a 95% CI P Mortality HR a 95% CI P
Germ cell tumors 0.98 0.57-1.69 .94 Not applicable c
Abbreviations: b, log hazard ratio; CI, confidence interval; CNS, central nervous system; HR, hazard ratio; SEER, Surveillance, Epidemiology, and End Results; SES, socioeconomic status; STS, soft-tissue sarcomas.aAdjusted for age, sex, and stage at diagnosis (stage not applicable for leukemias). Bootstrapping was used for standard errors.b( btotal –bdirect )/btotal). cDirect and indirect effects were not estimated for cancers with a statistically nonsignificant total effect ( P>.05); bootstrapping was not used.
4094 Cancer October 15, 2018
Original Article results from prior studies showing that whites have a sig-
nificant survival advantage over blacks and Hispanics for
several childhood cancers, including leukemias, 2,3 lym-
rhabdomyosarcoma soft-tissue sarcomas. 9In no instance
was survival among whites significantly worse than that of
either black or Hispanic children. Racial and ethnic sur-
vival differences were not uniform across cancers, and
some variability between black-white and Hispanic-white
comparisons was observed.
We demonstrated that SES significantly mediates
racial/ethnic survival disparities for several childhood can-
cers, including ALL, AML, neuroblastoma, and NHL.
For these cancers, indirect hazard ratios fell within a nar-
row range (1.13-1.17) for both black-white and Hispanic-
white comparisons. This suggests that the association
between SES and survival is not modified by, and may be
shared across, race/ethnicity. Conversely, the proportion
of the overall survival disparity explained by SES (ie, the
percent reduction) did vary by race/ethnicity for some
cancers. For example, among AML cases, SES explained
only 28% of the black-white survival disparity but 73% of
the Hispanic-white disparity. This may suggest a differen-
tial role of other mediating factors across racial/ethnic
groups for some cancers. For example, prior evidence sug-
gests that, among AML cases, a significantly lower pro-
portion of black children have matched family donors
available in comparison with white and Hispanic chil-
dren. 29Among other cancers with significant racial/ethnic
survival disparities (eg, CNS tumors and soft-tissue sarco-
mas), we found no significant evidence of mediation by
SES. Thus, for these cancers in particular, we cannot rule
out mediation by other factors such as differences in
tumor biology, pharmacogenomics, health care quality,
and other social factors not captured by the SES index (eg,
racism). 30
Because SES did not uniformly influence survival
across different types of childhood cancer, the mecha-
nisms through which SES influences survival may be
cancer-specific. For example, the strong association
between SES and ALL survival may be explained by differ-
ences in treatment adherence. 10 Unlike treatments for
other childhood cancers, the treatment of ALL requires a
prolonged maintenance phase composed of the oral
administration of antimetabolites, which may be difficult
for low-SES families to adhere to because of social and
economic constraints. 10 This is supported by prior evi-
dence of lower treatment adherence among children with
ALL living in a single-mother household versus a 2-parent
household. 31 Other cancer-specific mechanisms through
which SES may influence survival are less understood.
Secondary findings from this study suggest that factors
beyond health insurance status and stage at diagnosis con-
tribute to the SES-survival association, at least for some
TABLE 3. Mediation by SES of Ethnic (Hispanic vs White) Survival Disparities Among Childhood Cancer
Cases Aged 0 to 19 Years and Diagnosed in 2000-2011 in the SEER 18 Registries
Cancer Type
Total Effect of Ethnicity on Survival Through All Medi- ating Pathways
Direct Effect of Ethnicity on Survival After Blocking SES Pathway
Indirect Effect of Ethnicity on Survival OperatingThrough SES Pathway Reduction From Total Effect to Direct Effect, % b MortalityHR a 95% CI P Mortality HR a 95% CI P Mortality HR a 95% CI P
Abbreviations: b, log hazard ratio; CI, confidence interval; CNS, central nervous system; HR, hazard ratio; SEER, Surveillance, Epidemiology, and End Results; SES, socioeconomic status; STS, soft-tissue sarcoma.aAdjusted for age, sex, and stage at diagnosis (stage not applicable for leukemias).b( btotal –bdirect )/btotal). cDirect and indirect effects were not estimated for cancers with a statistically nonsignificant total effect ( P>.05); bootstrapping was not used.
4095 Cancer October 15, 2018
Mediation of Childhood Cancer Survival/Kehm et al childhood cancers. Additional research is needed to fur-
ther unpack the association between SES and childhood
cancer survival.
Limitations
We relied on an area-based variable as our primary measure
of SES because of the lack of individual-level SES measures
in SEER data; moreover, we selected an SES index to oper-
ationalize the SES construct over a meaningful period of
time. Although this improves upon many prior
population-based cancer studies that lacked any measures
of SES or relied on county-level measures, tract-level SES is
still a proxy for individual-level SES in this study because
we could not comprehensively control for SES at the indi-
vidual level. 32,33 Furthermore, we used a fairly crude mea-
sure of individual-level health insurance status (private vs
otherwise) in our secondary analysis. Because the tract-level
SES index was available in SEER only for the years 2000-
2012, the sample size and the follow-up time were limited.
This prevented us from testing more homogenized cancer
and racial/ethnic subgroups or stratifying by age. Addi-
tional research is thus needed for other smaller populations
of racial and ethnic groups not considered in this analysis
because of the rarity of childhood cancer, which limited
power. We also lacked geographic variables to explore
potential spatial variations in survival. Furthermore, the
lack of clinical data in SEER limited our ability to account
for diagnostic, therapeutic, and biological factors, such as
cytogenetic or molecular features. Finally, there is the
potential for differential loss to follow-up by race and SES.
In conclusion, through the application of formal
mediation methods, we have demonstrated that SES signif-
icantly contributes to racial and ethnic survival disparities
for several childhood cancers, including ALL, AML, neuro-
blastoma, and NHL. Thus, for these cancers in particular,
racial/ethnic survival disparities could theoretically be
addressed through initiatives that reduce social and eco-
nomic barriers to effective care. Such efforts may include
expanded health insurance coverage, improved patient care
coordination, increased health literacy, and supplementa-
tion of transportation and childcare costs during treatment.
However, because SES did not fully account for survival
disparities, we cannot rule out the potential role of other
mediating pathways, including tumor biology, pharmaco-
multipronged intervention approach that both addresses
socioeconomic barriers to care and invests in personalized
treatment regimens may ultimately be needed to fully elim-
inate childhood cancer survival disparities.
FUNDING SUPPORT
This work was supported by a National Institutes of Health
Translational Pediatric Cancer Epidemiology Training Grant
(T32CA099936).
CONFLICT OF INTEREST DISCLOSURES
The authors made no disclosures.
AUTHOR CONTRIBUTIONS
Rebecca D. Kehm : Conceptualization, data curation, formal anal-
ysis, methodology, writing–original draft, and writing–review and
editing. Logan G. Spector : Conceptualization, methodology, and
writing–review and editing. Jenny N. Poynter : Conceptualization,
methodology, and writing–review and editing. David M. Vock :
Conceptualization, methodology, and writing–review and editing.
Sean F. Altekruse : Conceptualization, methodology, and writing–
review and editing. Theresa L. Osypuk : Conceptualization, meth-
odology, and writing–review and editing.
REFERENCES
1. Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2010. Bethesda, MD: National Cancer Institute;2013. 2. Bhatia S. Influence of race and socioeconomic status on outcome of children treated for childhood acute lymphoblastic leukemia. Curr Opin Pediatr. 2004;16:9-14. 3. Hossain MJ, Xie L, Caywood EH. Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidencefrom four decades of US population data. Cancer Epidemiol. 2015; 39:720-726. 4. Grubb W, Neboori H, Diaz A, Li H, Kwon D, Panoff J. Racial and ethnic disparities in the pediatric Hodgkin lymphoma population.Pediatr Blood Cancer. 2016;63:428-435. 5. Kent EE, Breen N, Lewis DR, de Moor JS, Smith AW, Seibel NL. US trends in survival disparities among adolescents and young adultswith non-Hodgkin lymphoma. Cancer Causes Control. 2015;26: 1153-1162. 6. Austin MT, Hamilton E, Zebda D, et al. Health disparities and impact on outcomes in children with primary central nervous systemsolid tumors. J Neurosurg Pediatr. 2016;18:585-593. 7. Henderson TO, Bhatia S, Pinto N, et al. Racial and ethnic dispar- ities in risk and survival in children with neuroblastoma: a Child-ren’s Oncology Group study. J Clin Oncol. 2010;29:76-82. 8. Johnson KA, Aplenc R, Bagatell R. Survival by race among children with extracranial solid tumors in the United States between 1985and 2005. Pediatr Blood Cancer. 2011;56:425-431. 9. Waxweiler TV, Rusthoven CG, Proper MS, et al. Non-rhabdomyo- sarcoma soft tissue sarcomas in children: a Surveillance, Epidemiol-ogy, and End Results analysis validating COG risk stratifications. Int J Radiat Oncol Biol Phys. 2015;92:339-348. 10. Bhatia S. Disparities in cancer outcomes: lessons learned from chil- dren with cancer. Pediatr Blood Cancer. 2011;56:994-1002. 11. Gupta S, Wilejto M, Pole JD, Guttmann A, Sung L. Low socioeco- nomic status is associated with worse survival in children with can-cer: a systematic review. PLoS One. 2014;9:e89482. 12. Jorde LB, Wooding SP. Genetic variation, classification and ‘race’. Nat Genet. 2004;36:S28-S33. 13. Jones CP. Levels of racism: a theoretic framework and a gardener’s tale. Am J Public Health. 2000;90:1212-1215. 14. Adamo M, Dickie L, Ruhl J. SEER Program Coding and Staging Manual 2016. Bethesda, MD: National Cancer Institute; 2016. 15. Surveillance, Epidemiology, and End Results. SEER race recode. http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity. AccessedJanuary 2, 2018.
4096 Cancer October 15, 2018
Original Article 16. NAACCR Race and Ethnicity Work Group. NAACCR Guideline for Enhancing Hispanic/Latino Identification: Revised NAACCR Hispanic/Latino Identification Algorithm [NHIA v2. 2.1]. Spring- field, IL: North American Association of Central Cancer Registries;2011. 17. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification of Childhood Cancer. Cancer. 2005;103:1457-1467. 18. Yu M, Tatalovich Z, Gibson JT, Cronin KA. Using a composite index of socioeconomic status to investigate health disparities whileprotecting the confidentiality of cancer registry data. Cancer Causes Control. 2014;25:81-92. 19. Kish JK, Yu M, Percy-Laurry A, Altekruse SF. Racial and ethnic dis- parities in cancer survival by neighborhood socioeconomic status inSurveillance, Epidemiology, and End Results (SEER) registries. J Natl Cancer Inst Monogr. 2014;2014:236-243. 20. Yost K, Perkins C, Cohen R, Morris C, Wright W. Socioeconomic status and breast cancer incidence in California for different race/eth-nic groups. Cancer Causes Control. 2001;12:703-711. 21. Liu L, Deapen D, Bernstein L. Socioeconomic status and cancers of the female breast and reproductive organs: a comparison acrossracial/ethnic populations in Los Angeles County, California (UnitedStates). Cancer Causes Control. 1998;9:369-380. 22. Young J, Roffers S, Ries L, Fritz A, Hurlbut A. SEER Summary Staging Manual 2000: Codes and Coding Instructions. https://seer.cancer.gov/tools/ssm/. Accessed January 2, 2018. 23. Tchetgen Tchetgen EJ, Shpitser I. Semiparametric Estimation of Models for Natural Direct and Indirect Effects. Cambridge, MA: Harvard Uni- versity; 2011. Harvard University Biostatistics Working Paper 129. 24. Tchetgen Tchetgen EJ. Inverse odds ratio–weighted estimation for causal mediation analysis. Stat Med. 2013;32:4567-4580.
25. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173-1182. 26. Nguyen QC, Osypuk TL, Schmidt NM, Glymour MM, Tchetgen Tchetgen EJ. Practical guidance for conducting mediation analysiswith multiple mediators using inverse odds ratio weighting. Am J Epidemiol. 2015;181:349-356. 27. Pearl J. Direct and indirect effects. In: Breese J, Koller D, eds. Pro- ceedings of the Seventeenth Conference on Uncertainty in ArtificialIntelligence. San Francisco, CA: Morgan Kaufmann Publishers Inc; 2001:411-420. 28. StataCorp. Stata Statistical Software. College Station, TX: StataCorp; 2011. 29. Aplenc R, Alonzo TA, Gerbing RB, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Blood. 2006;108:74-80. 30. Kawachi I, Daniels N, Robinson DE. Health disparities by race and class: why both matter. Health Aff (Millwood). 2005;24:343-352. 31. Bhatia S, Landier W, Shangguan M, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanicwhite children with acute lymphoblastic leukemia: a report fromthe Children’s Oncology Group. J Clin Oncol. 2012;30:2094- 2101. 32. Krieger N. Overcoming the absence of socioeconomic data in medi- cal records: validation and application of a census-based methodol-ogy. Am J Public Health. 1992;82:703-710. 33. Geronimus AT, Bound J. Use of census-based aggregate variables to proxy for socioeconomic group: evidence from national samples. Am J Epidemiol. 1998;148:475-486.
Original and non-plagiarized custom papers. Our writers develop their writing from scratch unless you request them to rewrite, edit or proofread your paper.
Timely Delivery. capitalessaywriting.com believes in beating the deadlines that our customers have imposed because we understand how important it is.
Customer satisfaction. Customer satisfaction. We have an outstanding customer care team that is always ready and willing to listen to you, collect your instructions and make sure that your custom writing needs are satisfied
Privacy and safety. It’s secure to place an order at capitalessaywriting.com We won’t reveal your private information to anyone else.
Writing services provided by experts. Looking for expert essay writers, thesis and dissertation writers, personal statement writers, or writers to provide any other kind of custom writing service?
Enjoy our bonus services. You can make a free inquiry before placing and your order and paying this way, you know just how much you will pay. A verdict was rendered against three parent chaperones. How was the third parent included in the case?
Premium papers. We provide the highest quality papers in the writing industry. Our company only employs specialized professional writers who take pride in satisfying the needs of our huge client base by offering them premium writing services Does Socioeconomic Status Account for Racial and Ethnic
For this final you will be writing about your experiences during this crazy year 2020.
As we all know, there have been many huge issues that have arisen: Racial Injustice, Policing issues, Covid, the Election….and more. In addition, there are issues that continue to be important: Climate, Education, Economy… and more.
For this final you have several questions to consider. You do not need to answer all of these. They are designed to give you some focus. You might find that answering one or two of these will be enough to complete the final.
1. What personally happened to you during 2020?
2. What most surprised or shocked you about this year?
3. If 2020 were a person, what would you say to them?
4. What did you learn about yourself during this year?
5. What did you learn about others during this year?
6. What do you think the history books will say about 2020 in fifty years?
As I said, you dont need to answer every question. Pick the ones that most interest you.
You dont have to bring in outside quotes for this final, however you might find that doing so actually helps your ideas.
The page minimum is 7 pages, double spaced, 12 point font.
All healthcare workers must be culturally sensitive. To that end, they should have some understanding of this county’s history, particularly in its treatment of non-white racial groups, as well as current immigration trends.
How does the racial history of this county contribute to healthcare disparities? What are some other contributing factors?
What challenges are face by immigrants arriving in this country in the past 10 years when it comes to maintaining and/or improving their health.
What are some possible solutions that could help end healthcare inequities?
In correct APA style, list at least 2 sources that you to research these topics.
Explain instances of Racial inequality in oligarchy systems. Also explain the theories associated with Racial inequality. The question tries to ask about the instances of racial inequality in oligarchy systems of government and further give out the political policies which played a role in promoting racial inequality in those governments. Further, it clarifies about how politics contributes towards the same Racialism.