Categories
Writers Solution

Media-specific concept

Critical Writing Assignment:

Write a 300-400 word analysis of one (only one) media-specific concept (not a

theory/an account of things that makes use of particular concepts) from Chapters

1 to 3 of the course textbook. Your submission needs to be written in standard essay

form (no point form, use paragraphs, structure should be: thesis; development/body;

conclusion. Also see below.). Ask yourself: how does the concept apply to that

particular medium? What understanding do I gain through applying the concept?

What are possible downsides or deficiencies to the concept I chose? To be more

specific, your task is as follows in the next paragraph…

When writing this critical piece, structure it like an essay. This means, although you

are not advancing an argument (as you would be doing in an actual essay), make clear

in the introduction (or opening sentences) the focus of your assessment (ie, the medium

you choose to examine). Then indicate why that particular concept has importance for

what the medium you’re analyzing. Getting into the exposition portion of your piece

(which entails doing some reading/researching of the medium you’ve chosen),

develop on or discuss the details concerning the function/purpose and, in nontechnical

language (ie, engineering terminology), the workings of the medium. To conclude your

analysis, speculate on how and why the analysis may be expanded to account for other

contemporary mediums. Note, all sources informing your analysis need to be from

peer-reviewed scholarly works (Wikipedia is NOT a peer-reviewed source, however,

academic journal articles are).

Note on research: Cite all your sources and include a bibliography with your

assignment. You must only use the MLA citation style.

Note on writing: As with any form of academic writing, do not assume the reader

knows about the material you are writing on.

Order from Academic Writers Bay

Categories
Writers Solution

Prostate-specific antigen (PSA) testing and treatment

Respond to  at least two (2) peers, asking a question about their process in creating their purpose  or make a suggestion to strengthen the connection between the problem and purpose statement. Then continue to check in each week by asking a question, sharing an experience, responding to someone else, or adding helpful links and resources.

LINDA

Purposeful Connection

The statement’s research topic focuses on analyzing the attitudes about prostate-specific antigen (PSA) testing and treatment held by older African American males who are at least 70 years old. It shows the need to address a number of factors, including attitudes, knowledge gaps, impediments, and preferences (Rosenstock, 1990), while also acknowledging the presence of a knowledge gap.

The purpose of the research is to investigate and comprehend more fully the health beliefs held by this community. The study intends to extensively analyze the experiences and opinions of older African American males about PSA testing and treatment by using qualitative research methodologies like focus groups or interviews. In the research, characteristics and ideas linked to participants’ perspectives, knowledge gaps, obstacles, and preferences about prostate cancer screening and treatment will be described and clarified.

My choice of a qualitative research design is justified by the need to thoroughly examine the richness and nuances of the participants’ experiences and perspectives. Unlike quantitative measures, a qualitative approach allows a more profound comprehension of the participants’ thoughts and experiences about PSA testing and treatment.

Therefore, the purpose of the study aligns harmoniously with the research problem as it seeks to bridge the identified knowledge gap by exploring and illuminating the variables of interest tied to healthcare beliefs. The study facilitates a comprehensive exploration of their health beliefs by capturing the intricate and diverse aspects of the participants’ encounters and viewpoints through qualitative methods, such as interviews or focus groups. The qualitative approach goes beyond numerical data and grants a deeper understanding of their thoughts and experiences concerning PSA testing and treatment.

Subsequently, the purpose statement delineates the study’s specific objectives, aligning with the identified research problem and underscoring the necessity of a qualitative approach to attain an all-encompassing comprehension of the healthcare beliefs held by older African American men aged 70 and above regarding PSA testing and treatment.

Reference

Rosenstock, I. M. (1990). The Health Belief Model: Explaining health behavior through expectancies. In K Glanz, F.M. Lewis, & B.R. Rimer, (Eds.), Health Behavior and Health Education, (pp. 39-62). San Francisco, CA: Jossey-Bass Inc.

SHELLON

Consistency in the problem and purpose statements improves the logic of any research, which is vital for research transparency. The problem statement discusses the topic and the problem and describes the gap, which is not the problem. The gaps are not solutions to the problem, and solutions are also not research gaps. The connection to the purpose statement is where the researcher describes their intention of researching the problem in Prostate-specific antigen (PSA) testing and treatment.

My research problem is how women survivors of Childhood Sexual Abuse (CSA) find resilience through meaning-making mechanisms. Childhood Sexual Abuse is a severe worldview issue affecting all ages, women and men. According to Van Der Westhuizen and the authors (2023), little is known from the literature about the specific meaning-making mechanisms that CSA survivors experience. Even though several mechanisms were identified, such as being benevolent, restoring and empowering the inner self, future research is recommended by the authors to confirm those findings to inform treatment interventions for women survivors of CSA.

With this knowledge, the problem statement is that even though CSA women survivors find s source of meaning and fulfillment throughout their recovery process, meaning-making, which may facilitate resilience, little is known confirming if the meaning-making mechanisms, such as restoring and empowering the inner self, are effective.  Van Der Westhuizen (2023) emphasized that the severity of CSA is global and has life-long devasting effects on individuals’ intrapersonal functioning, such as low self-esteem.

The purpose aligns and consistently connects well with the research problem and problem statement. This qualitative study aims to explore and confirm the meaning-making mechanisms CSA women survivors experience to inform intervention treatment. According to Van Der Westhuizen (2023), clinicians and researchers are aware of the prevalence of CSA among females, which affects 180 in every 1000. This qualitative study will focus on meaning-making described in the literature as a combination of emotional, cognitive, existential, and motivational factors allowing CSA survivors to make sense of the trauma and feel fulfilled (Wong, 2011).

References

Van Der Westhuizen, M., Walker-Williams, H. J., & Fouché, A. (2023). Meaning Making Mechanisms in Women Survivors of Childhood Sexual Abuse: A Scoping Review. Trauma, Violence, & Abuse, 24(3), 1363–1386.  https://doi.org/10.1177/15248380211066100 Links to an external site.

Wong P. T. P. (2011). Positive psychology 2.0: Towards a balanced interactive model of the good life. Canadian Psychology, 52(2), 69–81. Crossref

WE HAVE DONE THIS QUESTION BEFORE, WE CAN ALSO DO IT FOR YOU

GET SOLUTION FOR THIS ASSIGNMENT, Get Impressive Scores in Your Class

CLICK HERE TO MAKE YOUR ORDER on Prostate-specific antigen (PSA) testing and treatment

TO BE RE-WRITTEN FROM THE SCRATCH

Categories
Writers Solution

specific information technology and a specific business application

Assignment 1 Research Proposal on a specific information technology and a specific business application

Objective(s)

This assessment item relates to the unit learning outcomes as in the unit descriptor. This assessment is designed to improve student learning skills and to give students experience in researching the literature on a topic relevant to the Unit of Study subject matter, critically analysing current academic papers then presenting idea or question and expected outcomes with clarity and definition in a referenced written report.

Instructions

For this component you will write a research proposal on a particular topic. The topic you select must be directly relevant to IT in Business. Your topic must include a specific information technology and a specific business application, e.g., AI For fraud detection.

All students must have a different topic. Students can choose to write about the same technology, but the approach and the thrust of each paper must be different. For instance, you could look at cloud computing from a security viewpoint, or from an environment impact viewpoint, or from the perspective of a manager trying to reduce their hardware costs. There will be many perspectives to look at each technology and its relation to Business IT.

To ensure this uniqueness, each student must email their topic and title to their tutor within the first two weeks. Your tutor will respond with an approval or with a message that you will either need to choose a different technology or to change the thrust of your paper. Once it has been approved you should begin by working towards the first deliverable.

Note: specific information technology and a specific business application, It is important to realize, that you must have prior approval for a topic before you can submit. If you submit something for assessment without approval for the specific topic, it will not be graded. Once you have a topic approved, you cannot change it without consent from your subject lecturer.

The Key elements of the research proposal

Your research proposal must include the following components:

1. An introduction or context to the study problem or subject, identifying the research gap in the existing literature

2. A thesis statement that answers the research question and, if possible, the research question

3. The need for the research, as demonstrated by the research’s justification

4. A preliminary literature study detailing prior work in the field.

5. The theoretical foundation that would guide the planned study

6. A statement of the research’s contribution to the field as a whole

7. The suggested research approach

8. A research strategy and plan

9. The anticipated research’s timetable

10. References listed for the proposal’s preparation

Submissions

The outline will include the title and a description of the sections in your paper and the key topics in each, along with at least five preliminary references and a note as to in which section they will be included.

• You are required to address Elements 1,2,3,4,10 in your outline (200 words).

The draft version is just that, a draft. The first draft can be messy, rough and amenable to change, allowing you to re-mould your structure with successive drafts. You can avoid trying to write perfect sentences and paragraphs (polishing). Additionally, you can include bullet points, sentence fragments, and temporary section headings, but I would expect approximately half of the paper to be near complete at this stage. Don’t worry about being repetitive or boring. Avoid making your writing eloquent, stylistic or succinct in the first draft: you can revise and improve your writing as your rework later drafts. The idea of the draft is to get down initial ideas and develop an overall structure of the paper.

• You are required to address Elements 1-10 in your draft (≥ 1250 words).

The final version of your paper is the polished version, the approach should follow the same plan as your draft, but obviously some change may have occurred from the draft. You should not use a lot of small sections and bullet points in the final version. Your research proposal should be presenting the state of current knowledge in a specific area and as such, should have a narrative that flows from one paragraph to another. You cannot achieve this with bullet points and small disjoint sections. All references included with your paper must be cited within the paper and be appropriate to the context of the citation.

• You are required to address Elements 1-10 in your final proposal (2500 words).

Some Notes:

  • All references must use the Harvard referencing style.
  • The length of the paper is to be 2500 words (excluding the references, contents etc.)
  • The font of the body text should be 12pt Times New Roman font, 1.5 line spaced
  • Section Heading should be in Arial Bold 12-point font
  • At NO time should you use Wikipedia as a reference

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com on specific information technology and a specific business application

NO PLAGIARISM, Get impressive Grades in Your Academic Work

Categories
Writers Solution

Issue-Specific Security Policies

Assessment Description

Throughout this program, you will be creating a Business Continuity Plan (BCP) based on an industry that is of interest to you. This assignment is a continuation of that project. Using the Business Continuity Plan (BCP) content developed in the previous courses, complete Phase 3. Note: Upon completion and submission, implement any feedback from your instructor. Then, make sure to retain a copy of this assignment for the Business Continuity Plan, which will be finalized and submitted in either CYB-690 or ITT-660, depending on your major.

Special Note: Due to the length of this assignment, it will be started in Topic 4 and completed in Topic 5. Make sure to refer to the appropriate topic Resources as specified.

Prior to beginning this assignment, view “Business Continuity Plan (BCP)” and “Business Continuity and Disaster Recovery” within the “Video Playlist: Policy Management for Security Solutions,” located in the Class Resources.

Part 1: Issue-Specific Security Policies

NIST SP 800-12 Rev 1 recommends three types of information security policies to help organizations create, maintain, and develop an effective Information Security Program, with the objective of reducing risks, complying with laws and regulations, assuring operational continuity, and applying informational confidentiality, integrity, and availability.

One type is Issue-Specific Security Policies (ISSP). For each of the following issues, use “NIST SP 800-12 Rev 1,” located in the topic Resources, to create an ISSP document. Make sure to address the following for each policy: Issue Statement, Statement of the Organization’s Position, Applicability, Roles and Responsibilities, Compliance, Points of Contact, and Supplementary Information.

  1. Use of personal equipment on your company’s network (BYOD)
  2. Internet access
  3. Personal use of company equipment
  4. Removal of organizational equipment from your company’s property
  5. Use of unofficial software

Part 2: Legal Standard Operating Policies and Procedures 

A thorough legal standard operating policies and procedures (SOP) document is the foundation of a good business continuity plan. Standard operating procedures and policies provide the roadmap for management and staff to follow. These steps become the backbone of the business continuity plan, and they must govern every aspect of your chosen company. 

Using the Business Continuity Plan (BCP) – Phase 1 content developed in CYB-515, design a 6- to 8-page manual presenting the legal standard operating policies and procedures to describe incidents including fire evacuation, ransomware attack, power outage, and pandemic situations.

Each policy or procedure must include information related to:

  1. Industry Compliance
  2. Business Operations
  3. Training and Awareness
  4. Disaster Recovery
  5. Incident Response

Support the BCP with a minimum of three scholarly resources.

Part 3: Incident Response

Once an adverse event that has targeted a business is confirmed, it is labeled as an incident. That is the time to activate the incident response plan. After the plan is activated, procedures are followed for incident reaction. Most of the time, the incident is contained. Then, clean-up of all the problems begins and the organization makes a full recovery, with everything back to normal. This is incident recovery. 

Use the guidelines provided by “NIST SP 800-61 Rev. 2: The Computer Security Incident Handling Guide,” located in the topic Resources, to design an Incident Response Plan (IRP) for your company. Include actions to be taken if each of the following adverse events occurs:

  1. Ransomware attack on one PC/user
  2. Power failure
  3. ISP failure

If a disaster renders the current business location unusable for a long time, and there is no alternate site to reestablish critical business functions, what would you suggest in a situation like this? Hint: Use the 8-step model recommended by NIST to develop and maintain a viable BC program for your company. 

Support the BCP with a minimum of three scholarly resources.

While APA style is not required for the body of this assignment, solid academic writing is expected, and documentation of sources should be presented using APA formatting guidelines, which can be found in the APA Style Guide, located in the Student Success Center.

This assignment uses a rubric. Please review the rubric prior to beginning the assignment to become familiar with the expectations for successful completion.

You are required to submit this assignment to LopesWrite. A link to the LopesWrite technical support articles is located in Class Resources if you need assistance

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com on Issue-Specific Security Policies

NO PLAGIARISM, Get impressive Grades in Your Academic Work

Categories
Writers Solution

What are specific ethical pitfalls that underlie the French mitigation strategies?

  1. Write an initial response to the following key question(s) or prompt(s):
    As the quotation below from the French AFD reveals, an example of a group of labors in low-cost countries who have long been deprived of equal pay for equal work are women.

    The figures speak for themselves: 70% of people living on less than a dollar a day are women, as are two-thirds of illiterates. In certain countries, 50% of women are victims of violence. Women produce 50% of food and two-thirds of global labor, but only earn 10% of incomes. Women are discriminated against in all areas of society: employment, education, health, and governance. Yet they contribute to the development of countries through their work. A number of studies have demonstrated that reducing gender inequalities contributes to the equitable and sustainable development of countries.

    Go to the ADF site to see the French government’s gender and development strategies. Reflect on the data in the quote above and on France’s strategies to combat these violations of compensatory justice as you respond to the Key Questions.
    1. What are specific ethical pitfalls that underlie the French mitigation strategies?
    2. How can your company leverage concessions from offshore providers to ensure progress in mitigating these pitfalls?
    3. Which virtues would your company’s leadership need to demonstrate in order to accept responsibility to better these workers’ situations and to implement mitigation strategies for the ethical inequities?
    4. Do not muzzle an ox while it is treading out the grain,” and “The worker deserves his wages.”. Verse 17, preceding this one, discussed the Elders in the church who do their work and should be well paid for that, since they are teaching and preaching. “Faithful church leaders should be supported and appreciated” (Tyndale, 2007, p. 1934). 
  2. Need at least 4 references for each one point.
  3. Total words 450 -500

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com on What are specific ethical pitfalls that underlie the French mitigation strategies?

NO PLAGIARISM, Get impressive Grades in Your Academic Work

Categories
Writers Solution

Effective use of cinematic evidence/illustration and specific details from materials posted in module, 20%

Each answer must be a minimum of 600 words

Your essay must follow MLA guidelines for citations (in-text and in Works Cited page) of films and course materials. 

GRADING CRITERIA

  • Effective use of cinematic evidence/illustration and specific details from materials posted in module, 20%
  • Overall Organization (introduction, analysis, conclusion) 15%
  • Paragraph development, including effective topic sentence and transitions 10%
  • Accurate use of terms and concepts 10%
  • Effective use of grammar and style (diction, sentence structures, punctuation) 10%
  • Meets the analytical goals of the assignment 10%
  • Meets the minimum length of the assignment 10%
  • Demonstrates critical thinking 10%
  • Effective understanding of audience, tone, point of view 5%

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com on Effective use of cinematic evidence/illustration and specific details from materials posted in module, 20%

NO PLAGIARISM, Get impressive Grades in Your Academic Work

Categories
Writers Solution

Describe the legal environment of Brazil, making specific references to – the rule of law

In this assignment, you need to 1. Describe the legal environment of Brazil, making specific references to – the rule of law (to what extent is Brazil governed by law as opposed to arbitrary decisions of individual government officials) and – laws that govern foreign direct investment (for example, are there provisions to attract foreign direct investment, such as tax incentives, most-favored-nation treatment, dispute resolution fora; or provisions that restrict foreign direct investors such as high local content requirements or currency exchange restrictions). 2. Discuss challenges and opportunities for American investors posed by the legal environment. 3. Based on the challenges and opportunities you have identified through your research, formulate two recommendations, with your supporting arguments, to an American investor to successfully navigate your country’s legal environment.

WE HAVE DONE THIS ASSIGNMENT BEFORE, WE CAN ALSO DO IT FOR YOU

GET SOLUTION FOR THIS ASSIGNMENT, Get Impressive Scores in Your Class

CLICK HERE TO MAKE YOUR ORDER on   Describe the legal environment of Brazil, making specific references to – the rule of law

Are You looking for Assignment and Homework Writing help? We Provide High-Quality Academic Papers at Affordable Rates. No Plagiarism.

TO BE RE-WRITTEN FROM THE SCRATCH

Legal Environment Analysis

This is a written assignment that will be worth 100 points. It needs to be 3 pages long, double- spaced, Times New Roman 12, 1.25 margins.

The assignment is due on Saturday, March 26, at 11:59pm.

To submit it, use the “Legal Environment Analysis” Turnitin link that you will find by accessing the Assignments link in Blackboard.

Note: When referring to items that are not your own ideas (for example, referring to specific laws listed or talked about in your analysis), you must cite the laws using MLA or Chicago format. Here is a good website for tips on how to cite sources. (https://owl.purdue.edu/owl/research_and_citation/mla_style/mla_formatting_and_style_g uide/mla_formatting_and_style_guide.html)

Each individual has to turn in one written assignment.

In this assignment, you need to:

1. Describe the legal environment of your chosen country, making specific references to

– the rule of law (to what extent is the country governed by law as opposed to arbitrary decisions of individual government officials)

and

– laws that govern foreign direct investment (for example, are there provisions to attract foreign direct investment, such as tax incentives, most-favored-nation treatment, dispute resolution fora; or provisions that restrict foreign direct investors such as high local content requirements or currency exchange restrictions).

2. Discuss challenges and opportunities for American investors posed by the legal environment.

3. Based on the challenges and opportunities you have identified through your research, formulate two recommendations, with your supporting arguments, to an American investor to successfully navigate your country’s legal environment.https://owl.purdue.edu/owl/research_and_citation/mla_style/mla_formatting_and_style_guide/mla_formatting_and_style_guide.htmlhttps://owl.purdue.edu/owl/research_and_citation/mla_style/mla_formatting_and_style_guide/mla_form

Categories
Writers Solution

What specific strategies will you use to respond to the diverse learning needs in your classroom?

Use lesson Plan for guide(attached)

Fill out lesson Plan template

Step Two: Multicultural Lesson Plan (Due in Unit 5: 150 points)

This assignment is concerned with your ability to develop a lesson plan that delivers a multicultural or diversity objective while employing differentiated instructional strategies that promote an inclusive environment for diverse students. Consider the following when you plan your lesson:

What specific strategies will you use to respond to the diverse learning needs in your classroom?
For example, how will you differentiate your instruction to respond to English learners, students with special needs, or gifted learners in your lesson?
Are there any other individuals or groups you need to modify your instruction for?
How will the lesson sequence be modified so various groups or individuals will be successful with your learning objective?

Create a lesson plan using the lesson plan template or submit a Word document found under Course Documents on the Course Resources. It may be a lesson plan that you have conducted or will conduct, or it may be a lesson plan for a fictitious classroom created for this assignment.

Resources

Be sure to use two additional sources beyond your textbook to justify your instructional decisions for diverse learners.

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com ON  What specific strategies will you use to respond to the diverse learning needs in your classroom?

NO PLAGIARISM, Get impressive Grades in Your Academic Work

Categories
Writers Solution

specific alteration in health

Find a dietary assessment tool that can be used either generally or for a specific alteration in health.

When you have found your assessment tool, answer the following questions:

· What is the purpose of this tool?

· Do you believe that the purpose is fulfilled based on the questions being asked? Why?

· In what ways does the tool account for the individual perceptions and needs of the client?

· Is there a nutritional history included? What does it cover?

· Is the tool easy to use? Why or why not?

· Does the tool provide enough information to determine next steps or interventions? Explain.

The writing assignment should be no more than 2 pages and APA Editorial Format must be used for citations and references used. Attach a copy of the assessment tool

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com ON  specific alteration in health

NO PLAGIARISM, Get impressive Grades in Your Academic Work

Categories
Writers Solution

correct for self-reporting bias and to estimate state- specific and demographic subgroup–specific trends and projections of the preva- lence of categories of body-mass index (BMI)

T h e n e w e n g l a n d j o u r n a l o f m e d i c i n e

n engl j med 381;25 nejm.org December 19, 20192440

From the Center for Health Decision Sci- ence (Z.J.W.) and the Departments of Health Policy and Management (S.N.B.) and Social and Behavioral Sciences (A.L.C., J.L.B., C.M.G., C.F., S.L.G.), Harvard T.H. Chan School of Public Health, Boston; and the Department of Prevention and Community Health, Milken Institute School of Public Health, George Washington University, Washington, D.C. (M.W.L.). Address reprint requests to Mr. Ward at the Center for Health Decision Science, Harvard T.H. Chan School of Public Health, 718 Huntington Ave., Boston, MA, 02115, or at zward@ hsph . harvard . edu.

N Engl J Med 2019;381:2440-50. DOI: 10.1056/NEJMsa1909301 Copyright © 2019 Massachusetts Medical Society.

BACKGROUND Although the national obesity epidemic has been well documented, less is known about obesity at the U.S. state level. Current estimates are based on body measures reported by persons themselves that underestimate the prevalence of obesity, es- pecially severe obesity.

METHODS We developed methods to correct for self-reporting bias and to estimate state- specific and demographic subgroup–specific trends and projections of the preva- lence of categories of body-mass index (BMI). BMI data reported by 6,264,226 adults (18 years of age or older) who participated in the Behavioral Risk Factor Surveillance System Survey (1993–1994 and 1999–2016) were obtained and cor- rected for quantile-specific self-reporting bias with the use of measured data from 57,131 adults who participated in the National Health and Nutrition Examination Survey. We fitted multinomial regressions for each state and subgroup to estimate the prevalence of four BMI categories from 1990 through 2030: underweight or normal weight (BMI [the weight in kilograms divided by the square of the height in meters], <25), overweight (25 to <30), moderate obesity (30 to <35), and severe obesity (≥35). We evaluated the accuracy of our approach using data from 1990 through 2010 to predict 2016 outcomes.

RESULTS The findings from our approach suggest with high predictive accuracy that by 2030 nearly 1 in 2 adults will have obesity (48.9%; 95% confidence interval [CI], 47.7 to 50.1), and the prevalence will be higher than 50% in 29 states and not below 35% in any state. Nearly 1 in 4 adults is projected to have severe obesity by 2030 (24.2%; 95% CI, 22.9 to 25.5), and the prevalence will be higher than 25% in 25 states. We predict that, nationally, severe obesity is likely to become the most common BMI category among women (27.6%; 95% CI, 26.1 to 29.2), non- Hispanic black adults (31.7%; 95% CI, 29.9 to 33.4), and low-income adults (31.7%; 95% CI, 30.2 to 33.2).

CONCLUSIONS Our analysis indicates that the prevalence of adult obesity and severe obesity will continue to increase nationwide, with large disparities across states and demo- graphic subgroups. (Funded by the JPB Foundation.)

A B S T R A C T

Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity

Zachary J. Ward, M.P.H., Sara N. Bleich, Ph.D., Angie L. Cradock, Sc.D., Jessica L. Barrett, M.P.H., Catherine M. Giles, M.P.H., Chasmine Flax, M.P.H.,

Michael W. Long, Sc.D., and Steven L. Gortmaker, Ph.D.

Special Article

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 2019 2441

Projec ted Pr e va lence of Obesit y a nd Se v er e Obesit y

Although the growing obesity epi-demic in the United States has been well documented,1-4 less is known about long- term trends and the future of obesity prevalence. Although national projections of obesity have been made previously,5-7 state-specific analyses are limited. State-specific projections of the bur- den of obesity are important for policymakers, given the considerable variation in the prevalence of obesity across states,8 the substantial state- level financial implications,9 and the opportunity for obesity-prevention interventions to be imple- mented at a local level.10-13

However, a barrier to accurate state-level pro- jections is the paucity of objectively measured body-mass index (BMI) data according to state. The Behavioral Risk Factor Surveillance System (BRFSS), a nationally representative telephone survey of more than 400,000 adults each year,14 provides participants’ estimates of height and weight according to state. These data have been used to track obesity prevalence and are the basis of maps that have illustrated the growth of the obesity epidemic.1 Although the BRFSS pro- vides valuable state-level estimates over time, the reliance on subjective body measures reported by participants substantially underestimates the prev- alence of obesity owing to the well-documented self-reporting bias.8,15,16 We developed a method of bias correction to adjust the entire distribu- tion of BMI in the BRFSS surveys from 1993 through 2016 and estimated state-level historical trends and projections of the prevalence of BMI categories from 1990 through 2030 according to demographic subgroup.

M e t h o d s

Overview

We adjusted reported BMI data from the BRFSS to align the data with objectively measured BMI distributions from the National Health and Nu- trition Examination Survey (NHANES), a nation- ally representative survey in which measured data on height and weight are collected with the use of standardized examination procedures.17 We estimated trends in the prevalence of BMI categories according to subgroup in each state and made projections through 2030. The first author designed the study, gathered and analyzed

the data, and vouches for the accuracy and com- pleteness of the data. All the authors critically revised the manuscript and made the decision to submit the manuscript for publication.

Data

We obtained BRFSS data from 1993 through 1994 and 1999 through 2016, periods during which annual data were collected for all 50 states and Washington, D.C. (except for Wyoming in 1993, Rhode Island in 1994, and Hawaii in 2004). We obtained nationally representative NHANES data from 1991 through 1994 (phase 2 of NHANES III) and from 1999 through 2016 (con- tinuous NHANES). Data from pre-1999 BRFSS surveys were restricted to 1993 and 1994 to co- incide with phase 2 of NHANES III. (Before 1993, not all states were included in the BRFSS.) We cleaned each data set to ensure that the vari- ables of interest were not missing and ensured that reported height and weight in the BRFSS were biologically plausible. Our final BRFSS data set included 6,264,226 adults (18 years of age or older), and our NHANES data set included 57,131 adults. (Exclusion criteria and respondent characteristics are provided in Section 1 in the Supplementary Appendix, available with the full text of this article at NEJM.org.)

Adjustment for Self-Reporting Bias

We adjusted reported BMI data from the BRFSS so that the distribution was similar to measured BMI from NHANES. Because both the BRFSS and NHANES are designed to be nationally repre- sentative surveys, data from NHANES can be used to adjust participant-reported body measures in the BRFSS. By adjusting the entire distribution of reported BMI to be consistent with measured BMI in NHANES, we adjusted for self-reporting bias while preserving the relative position of each person’s BMI.8 Specifically, we estimated the dif- ference between participant-reported BMI and measured BMI according to quantile and then fit cubic splines to smoothly estimate self-reporting bias across the entire BMI distribution. Each per- son’s BMI was then adjusted for this bias given his or her BMI quantile. We adjusted BMI dis- tributions separately according to sex and time period (1993–1994, 1999–2004, 2005–2010, and 2011–2016) to control for potential time trends

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 20192442

T h e n e w e n g l a n d j o u r n a l o f m e d i c i n e

in self-reporting bias and composition of demo- graphic subgroups. (Additional details are provid- ed in Section 2 in the Supplementary Appendix.)

State-Specific Trends and Projections

BMI categories were defined according to the Centers for Disease Control and Prevention (CDC) guidelines: underweight or normal weight (BMI [the weight in kilograms divided by the square of the height in meters], <25), overweight (25 to <30), moderate obesity (30 to <35), and severe obesity (≥35).18 We used multinomial (renormal- ized logistic) regressions to predict the preva- lence of each BMI category as a function of time. This method ensures that the prevalence of all categories sums to 100% in each year and allows estimation of nonlinear trends in the prevalence of BMI categories. Our reduced covariate model (i.e., with year as the independent variable) im- plicitly accounts for trends in the composition of demographic subgroups (e.g., age distribution and composition of race or ethnic group catego- ries) within each state, since the relative contri- butions of these various factors (and their po- tential changing effect over time) are already reflected in the prevalence estimates. Such an ap- proach also implicitly controls for trends in other variables that may affect BMI, such as smoking or illness. Although it is important to explicitly con- trol for these variables when estimating the ef- fect of BMI on related health outcomes, because our outcome of interest was the prevalence of BMI categories over time, it was not necessary to control for these variables because their effect was already reflected in the observed prevalence estimates used to fit the models. (Additional de- tails and a discussion of previous approaches are provided in Sections 3.1 and 3.2 in the Supple- mentary Appendix.)

Regressions were performed nationally and for each state independently, while taking the complex survey structure of the BRFSS into ac- count. We estimated historical trends and pro- jections of the prevalence of each BMI category from 1990 through 2030, as well as the preva- lence of overall obesity (BMI, ≥30). We also made projections for demographic subgroups to examine trends and explore the effect of geogra- phy (i.e., state of residence) on obesity trends within subgroups. We estimated trends accord- ing to sex (male or female), race or ethnic group

(non-Hispanic white, non-Hispanic black, His- panic, or non-Hispanic other), annual house- hold income (<$20,000, $20,000 to <$50,000, or ≥$50,000), education (less than high-school grad- uate, high-school graduate to some college, or college graduate), and age group (18 to 39, 40 to 64, or ≥65 years) (Section 3.3 in the Supplemen- tary Appendix). Because of the small sample sizes and changing BRFSS categories of race or ethnic group over time, we combined five groups (“American Indian or Alaskan Native,” “Asian,” “Native Hawaiian or Pacific Islander,” “other,” and “multiracial”) into one “non-Hispanic other” category.

In accordance with the CDC guidelines that consider BRFSS estimates unreliable if they are based on a sample of fewer than 50 people,19 we suppressed state-level estimates from subgroups with fewer than 1000 respondents; given our data set of 20 rounds of BRFSS surveys, we sup- pressed estimates from subgroups with fewer than 50 respondents on average per year in a state. Thus, estimates for the following sub- groups were suppressed: non-Hispanic black adults in 12 states (Alaska, Hawaii, Idaho, Maine, Montana, New Hampshire, North Dakota, Ore- gon, South Dakota, Utah, Vermont, and Wyo- ming) and Hispanic adults in 2 states (North Dakota and West Virginia).

To account for uncertainty, we bootstrapped both data sets (NHANES and BRFSS) 1000 times, considering the complex structure of each survey (Section 3.4 in the Supplementary Ap- pendix) and repeated all analyses (i.e., adjustment for self-reporting bias and state-specific projec- tions). We report the mean and 95% confidence interval (calculated as the 2.5 and 97.5 percen- tiles of the bootstrapped values) for all esti- mates.

Assessment of Predictive Accuracy and Sensitivity Analyses

To evaluate the accuracy of our approach, we restricted our data sets (NHANES and BRFSS) to include only data from 1999 through 2010. We then repeated our analyses with this subset of data and predicted the prevalence of each BMI category in 2016 (i.e., 6 years after the last ob- served year in our truncated data). We compared our predictions with the observed prevalence (corrected for self-reporting bias) in 2016. This

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 2019 2443

Projec ted Pr e va lence of Obesit y a nd Se v er e Obesit y

exercise allowed us to evaluate the accuracy of our approach in predicting future values and allowed us to assess the potential effect of the change in the BRFSS sample design in 2011 to include cell-phone interviews on our estimation of trends. For our predictions, we calculated the coverage probability (i.e., the percentage of ob- served estimates that fell within our 95% confi- dence intervals), the percentage of our mean predictions that fell within a certain distance (e.g., 10% relative error) of the observed esti- mate, and the mean absolute error.

In a sensitivity analysis, we also made projec- tions based on self-reported body measures (i.e., no adjustment for self-reporting bias). Statistical analyses were performed with the use of R soft- ware, version 3.2.5 (R Foundation for Statistical Computing), with BRFSS bootstrapping per- formed in Java for computational efficiency.

R e s u l t s

Bias-Corrected BMI Data

After we corrected for self-reporting bias, our adjusted BMI distributions in the BRFSS data set did not differ significantly (P>0.05) from those in the NHANES data set for each sex and time period. Adjustment of the entire BMI distribu- tion also ensured that the prevalence of each BMI category in the BRFSS data set was similar to that in the NHANES data set. BMI values for men and women were adjusted on average by 0.71 and 1.76 units, respectively, with differential (increasing) adjustment according to reported BMI. (Additional details are provided in Sec- tion 2 in the Supplementary Appendix.)

Predictive Accuracy

Our coverage probability (i.e., the percentage of time that our 95% confidence intervals con- tained the observed estimate) for state-level prev- alence in 2016 was 94.6% across the four BMI categories. Subgroup-specific coverage probabil- ities were 92.5% on average (Section 4 in the Supplementary Appendix). Our mean predictions for states were within 10% (relative error) of the reported estimate 95.6% of the time, with a mean absolute error of 0.85 percentage points. Although our coverage probabilities are high, our mean predictions are less accurate for subgroups with smaller sample sizes.

Trends and Projections

Our projections show that the national preva- lence of adult obesity and severe obesity will rise to 48.9% (95% confidence interval [CI], 47.7 to 50.1) and 24.2% (95% CI, 22.9 to 25.5), respec- tively, by 2030, with large variation across states. Maps of state-level prevalence of obesity and severe obesity over time are provided in Figure 1. Based on current trends, our projections show that the prevalence of overall obesity (BMI, ≥30) will rise above 50% in 29 states by 2030 and will not be below 35% in any state. We also project that the prevalence of severe obesity (BMI, ≥35) will rise above 25% in 25 states (Table 1). State- level trends in the prevalence of each BMI cate- gory are presented according to subgroup in Section 5 in the Supplementary Appendix. These trends show that the prevalence of overweight is declining as obesity develops in more people.

Our sensitivity analyses, which did not cor- rect for self-reporting bias, revealed similar trends over time but with an overall projected obesity prevalence that was on average 5.3 percentage points lower than the bias-corrected obesity prevalence (relative error of approximately 10%) and similar underestimates according to sub- group (Section 6 in the Supplementary Appendix).

Our projections also revealed large disparities in obesity prevalence across subgroups. We project that by 2030 severe obesity will be the most com- mon BMI category nationwide among women, black non-Hispanic adults, and low-income adults (i.e., household income <$50,000) (Fig. 2).

In addition, we found large geographic dis- parities within subgroups (Fig. 3). (State-level maps and tables are provided in Sections 7 and 8 in the Supplementary Appendix.) In general, we found a higher prevalence of obesity among non- Hispanic black and Hispanic adults than among non-Hispanic white adults, and the heterogene- ity in the composition of the non-Hispanic other category of race or ethnic group across states was ref lected by the variation in obesity preva- lence across states for this group.

We also found a large gradient in the preva- lence of obesity according to income. For exam- ple, our projections show that severe obesity will be the most common BMI category in 44 states among adults with an annual household income of less than $20,000, as compared with only 1 state among adults with an annual household income

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 20192444

T h e n e w e n g l a n d j o u r n a l o f m e d i c i n e

B Prevalence of Severe Obesity (BMI, ≥35)A Prevalence of Overall Obesity (BMI, ≥30) 1990 1990

2000 2000

2010 2010

2020 2020

2030 2030

0 10 20 30 40 50 60

Prevalence (%)

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 2019 2445

Projec ted Pr e va lence of Obesit y a nd Se v er e Obesit y

of greater than $50,000 (Fig. 3). State-specific analyses according to subgroup are provided in Sections 7 through 9 in the Supplementary Ap- pendix, including the results for education and age subgroups, as well as suppressed estimates for race or ethnic groups.

D i s c u s s i o n

In this study, we used more than 20 years of data from more than 6 million adults and applied an analytical approach that provided more accurate state-level estimates of BMI trends, corrected for self-reporting bias. Our method differentially ad- justed the entire BMI distribution, an approach that preserves heterogeneity, in contrast to regres- sion-based approaches that adjust mean values.6,15 Adjustment of the entire BMI distribution has been shown to better capture the tails of the BMI distribution, resulting in more accurate es- timates of obesity prevalence, especially for severe obesity.8

Although analyses of trends in adult obesity in the United States have been performed previ- ously,1-6,15,20-23 a strength of our analysis is that we provided both national and state-level, sub- group-specific estimates (i.e., 832 demographic subgroups) based on bias-corrected data from more than 6 million adults over many years. Although previous criticisms of obesity projec- tions — often based on small samples over short periods — argue that changes in obesity preva- lence have not followed a predictable pattern,24 we observed remarkably stable and predictable trends across a wide range of states and demo- graphic subgroups. Moreover, we provided em- pirical evidence of the predictive validity of our approach, showing that our model has a high degree of accuracy. Our coverage probabilities of approximately 95% indicate that our 95% confi-

dence intervals appropriately reflect the uncer- tainty around our estimates.

Our sensitivity analyses, which did not adjust for self-reporting bias, revealed similar trends to those in our main analysis but with a lower prevalence, as expected. For example, our unad- justed projections of the prevalence of obesity among women in 2030 were on average 13% (6.4 percentage points) lower than our bias- corrected projections, a finding that highlights the importance of correcting for self-reporting bias to obtain accurate prevalence estimates.

We found that nearly 1 in 2 adults nationwide will probably have obesity by 2030, with large disparities across states and demographic sub- groups. Using our model, we projected that by 2030 the majority of adults in 29 states will have obesity and that the prevalence of obesity will approach 60% in some states and not be below 35% in any state. These results are similar to previous estimates showing that 57% of children 2 to 19 years of age in 2016 are projected to have obesity by the age of 35 years.7

We noted that as more adults cross the threshold to obesity, the prevalence of overweight is declining, a finding that highlights the impor- tance of assessing changes in weight across the entire BMI distribution rather than focusing on only one category. Especially worrisome is the projected rise in the prevalence of severe obesity, which is associated with even higher mortality and morbidity25 and health care costs.9 Using our model, we projected that by 2030 nearly 1 in 4 U.S. adults will have severe obesity, and the prevalence will be higher than 25% in 25 states. Severe obesity is thus poised to become as preva- lent as overall obesity was in the 1990s. Indeed, our projections suggest that severe obesity may become the most common BMI category among adults in 10 states by 2030 and even more common in some subgroups, especially among women, non-Hispanic black adults, and low-income adults; these findings highlight persistent disparities according to sex, race or ethnic group, and in- come. The high projected prevalence of severe obesity among low-income adults and the high medical costs of severe obesity have substantial implications for future health care costs,9 espe- cially as states expand access to obesity-related services for adult Medicaid beneficiaries.26

Although severe obesity was once a rare con-

Figure 1 (facing page). Estimated Prevalence of Overall Obesity and Severe Obesity in Each State, from 1990 through 2030.

Shown is the estimated prevalence of overall obesity (Panel A) and severe obesity (Panel B) among adults in each U.S. state from 1990 through 2030. Overall obesity includes the BMI (body-mass index) categories of moderate obesity (BMI, 30 to <35) and severe obesity (BMI, ≥35).

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 20192446

T h e n e w e n g l a n d j o u r n a l o f m e d i c i n e

State Overall Obesity (BMI, ≥30)* Severe Obesity (BMI, ≥35)

Overall Men Women Overall Men Women

percentage (95% confidence interval)

U.S. overall 48.9 (47.7–50.1) 48.2 (46.8–49.6) 49.9 (48.5–51.4) 24.2 (22.9–25.5) 21.1 (19.6–22.6) 27.6 (26.1–29.2)

Alabama 58.2 (56.2–60.2) 56.7 (53.8–59.4) 59.7 (57.3–62.3) 30.6 (28.5–32.8) 25.6 (22.6–28.5) 35.7 (33.2–38.3)

Alaska 49.3 (46.3–52.2) 48.9 (45.0–53.1) 50.0 (46.1–54.1) 24.2 (21.4–26.8) 21.7 (17.5–25.7) 27.6 (24.1–31.4)

Arizona 51.4 (48.9–53.9) 49.3 (45.7–53.0) 53.6 (50.5–56.6) 24.4 (22.1–26.7) 20.8 (17.5–24.2) 28.3 (25.3–31.2)

Arkansas 58.2 (55.7–60.4) 56.7 (53.2–59.9) 59.9 (57.0–62.8) 32.6 (30.1–35.1) 29.6 (26.2–33.1) 36.1 (33.0–39.1)

California 41.5 (39.9–43.3) 41.1 (39.0–43.4) 42.1 (40.0–44.3) 18.3 (16.8–19.8) 16.1 (14.1–18.1) 20.9 (19.0–22.8)

Colorado 38.2 (36.3–40.3) 37.5 (34.8–40.0) 39.2 (36.7–42.0) 16.8 (15.2–18.6) 14.3 (12.1–16.6) 19.8 (17.6–22.2)

Connecticut 46.6 (44.4–48.9) 46.5 (43.5–49.4) 46.9 (44.3–49.6) 22.5 (20.6–24.6) 19.8 (17.2–22.7) 25.3 (22.9–27.9)

Delaware 53.2 (51.0–55.7) 51.4 (48.2–55.0) 55.0 (51.9–58.1) 27.1 (24.8–29.6) 22.2 (19.0–25.6) 31.7 (28.7–34.8)

District of Columbia 35.3 (33.0–37.8) 32.3 (29.1–36.3) 39.0 (35.9–42.2) 17.3 (15.2–19.3) 11.3 (8.9–13.9) 23.1 (20.3–26.1)

Florida 47.0 (45.0–48.9) 47.9 (45.5–50.2) 46.3 (43.9–48.8) 21.3 (19.7–23.1) 19.0 (16.7–21.1) 24.0 (22.0–26.3)

Georgia 51.9 (49.9–54.2) 49.6 (46.6–52.7) 54.5 (51.8–57.2) 26.6 (24.3–28.8) 21.2 (18.3–24.2) 32.1 (29.6–34.7)

Hawaii 41.3 (39.2–43.4) 43.3 (40.3–46.1) 39.1 (36.4–41.9) 18.2 (16.4–20.2) 17.5 (14.9–20.1) 19.1 (17.0–21.7)

Idaho 47.7 (45.4–50.0) 48.0 (44.5–51.3) 47.7 (44.6–50.6) 23.0 (20.8–25.2) 20.8 (17.9–23.8) 26.0 (23.3–28.7)

Illinois 50.0 (47.8–52.1) 48.6 (45.3–51.3) 51.6 (48.9–54.5) 25.5 (23.5–27.7) 20.7 (17.8–23.5) 30.4 (27.5–33.0)

Indiana 51.6 (49.7–53.6) 50.7 (48.1–53.5) 52.9 (50.3–55.4) 26.9 (24.8–29.0) 24.1 (21.2–26.9) 30.3 (27.8–32.8)

Iowa 52.0 (50.0–54.0) 52.6 (49.8–55.2) 51.9 (49.2–54.4) 26.4 (24.4–28.5) 24.8 (22.0–27.7) 28.8 (26.1–31.5)

Kansas 55.6 (53.8–57.5) 54.3 (51.8–56.9) 57.0 (54.7–59.5) 30.6 (28.7–32.5) 26.7 (24.3–29.3) 34.8 (32.6–37.2)

Kentucky 54.8 (52.9–56.8) 54.5 (51.8–57.2) 55.4 (53.0–57.9) 29.4 (27.4–31.4) 26.0 (23.3–28.8) 33.1 (30.5–35.7)

Louisiana 57.2 (55.1–59.2) 56.3 (53.2–59.3) 58.3 (55.6–61.0) 31.2 (28.9–33.5) 26.8 (23.5–29.9) 36.0 (33.2–38.9)

Maine 50.3 (48.1–52.6) 49.4 (46.3–52.5) 51.3 (48.5–54.0) 24.2 (22.1–26.4) 20.9 (18.2–23.7) 27.7 (25.0–30.3)

Maryland 50.0 (48.1–52.0) 48.0 (45.4–50.8) 52.1 (49.7–54.5) 24.6 (22.8–26.6) 19.7 (17.5–22.1) 29.4 (27.0–31.9)

Massachusetts 42.3 (40.2–44.3) 43.1 (40.4–45.7) 41.7 (39.1–44.2) 20.0 (18.2–22.1) 18.7 (16.3–21.4) 21.5 (19.3–24.0)

Michigan 51.9 (50.2–53.7) 51.2 (48.8–53.6) 53.0 (50.8–55.2) 27.2 (25.5–29.1) 24.4 (21.9–26.9) 30.7 (28.3–33.1)

Minnesota 46.1 (44.3–48.0) 48.2 (46.0–50.4) 44.3 (41.9–46.6) 20.4 (18.7–22.2) 20.0 (17.7–22.3) 21.6 (19.5–23.6)

Mississippi 58.2 (56.0–60.2) 54.3 (51.1–57.2) 62.0 (59.3–64.6) 31.7 (29.5–33.9) 24.6 (21.4–28.0) 38.6 (35.9–41.2)

Missouri 52.4 (50.2–54.6) 51.0 (47.8–54.1) 53.9 (51.0–56.5) 28.3 (26.1–30.5) 24.4 (21.5–27.5) 32.4 (29.6–35.1)

Montana 44.2 (41.8–46.6) 44.5 (41.4–47.6) 44.3 (41.3–47.5) 21.4 (19.3–23.5) 19.6 (16.7–22.6) 23.9 (21.2–26.8)

Nebraska 51.3 (49.3–53.3) 51.0 (48.3–53.7) 51.7 (49.2–54.1) 25.4 (23.4–27.4) 21.5 (18.9–24.1) 29.6 (27.0–32.2)

Nevada 45.5 (42.7–48.3) 45.3 (41.5–49.0) 45.8 (42.1–49.6) 20.6 (18.1–23.4) 18.1 (14.7–22.1) 23.4 (20.0–26.8)

New Hampshire 48.8 (46.6–51.1) 50.5 (47.3–53.5) 47.1 (44.1–50.0) 24.1 (21.9–26.5) 21.9 (18.8–25.2) 26.6 (23.7–29.6)

New Jersey 46.6 (44.4–48.6) 48.6 (45.6–51.6) 44.8 (42.0–47.4) 21.7 (19.8–23.5) 19.9 (17.2–22.7) 23.8 (21.4–26.2)

New Mexico 51.8 (49.5–54.1) 49.5 (46.0–52.6) 54.6 (51.8–57.3) 24.8 (22.6–27.0) 22.7 (19.6–26.0) 27.5 (24.9–30.3)

New York 42.8 (41.0–44.8) 42.0 (39.5–44.7) 43.9 (41.4–46.3) 19.8 (18.2–21.6) 17.5 (15.2–19.9) 22.5 (20.4–24.8)

North Carolina 50.3 (48.3–52.2) 47.3 (44.8–49.9) 53.4 (50.8–55.7) 25.7 (23.6–27.5) 21.0 (18.3–23.6) 30.6 (28.0–33.0)

North Dakota 53.9 (51.6–56.1) 56.5 (53.4–59.4) 51.3 (48.5–54.0) 26.9 (24.7–29.0) 26.6 (23.4–29.6) 27.9 (24.9–30.7)

Ohio 53.2 (51.0–55.3) 52.4 (49.5–55.3) 54.1 (51.3–56.9) 26.8 (24.8–28.8) 23.8 (21.1–26.6) 30.0 (27.2–32.7)

Oklahoma 58.4 (56.4–60.2) 59.5 (56.9–61.9) 57.5 (54.9–59.8) 31.7 (29.7–33.9) 29.0 (26.1–32.0) 34.9 (32.6–37.6)

Oregon 47.5 (45.5–49.5) 47.9 (45.1–50.8) 47.3 (44.7–49.8) 24.1 (22.0–26.1) 21.6 (18.7–24.5) 27.1 (24.5–29.7)

Pennsylvania 50.2 (48.2–52.1) 50.8 (48.1–53.2) 50.0 (47.7–52.5) 24.8 (22.7–26.8) 23.3 (20.7–25.8) 27.0 (24.5–29.6)

Table 1. Projected State-Specific Prevalence of Adult Obesity and Severe Obesity in 2030.

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 2019 2447

Projec ted Pr e va lence of Obesit y a nd Se v er e Obesit y

State Overall Obesity (BMI, ≥30)* Severe Obesity (BMI, ≥35)

Overall Men Women Overall Men Women

percentage (95% confidence interval)

Rhode Island 47.3 (45.0–49.9) 48.8 (45.3–52.3) 46.3 (42.8–49.7) 22.9 (20.6–25.4) 21.9 (18.7–25.3) 24.5 (21.6–27.6)

South Carolina 52.8 (51.0–54.6) 49.6 (47.0–52.3) 56.0 (53.6–58.3) 27.2 (25.3–29.1) 21.2 (18.8–23.8) 33.0 (30.7–35.4)

South Dakota 50.6 (48.1–52.9) 53.0 (49.6–56.1) 48.2 (45.1–51.4) 25.2 (22.9–27.7) 24.1 (20.8–27.3) 26.9 (24.1–29.9)

Tennessee 55.8 (53.9–57.8) 55.0 (52.1–57.8) 56.9 (54.4–59.5) 29.9 (27.8–32.1) 26.5 (23.5–29.7) 33.7 (31.2–36.5)

Texas 52.9 (50.9–54.7) 50.1 (47.3–52.5) 55.9 (53.5–58.5) 26.6 (24.6–28.5) 22.5 (20.0–25.2) 31.1 (28.5–33.8)

Utah 43.2 (41.3–45.1) 43.9 (41.5–46.3) 42.7 (40.2–45.2) 20.6 (18.9–22.6) 18.8 (16.7–21.3) 23.0 (20.6–25.5)

Vermont 43.6 (41.5–45.8) 43.1 (40.2–46.1) 44.2 (41.7–47.0) 20.7 (18.9–22.7) 17.8 (15.4–20.2) 23.9 (21.5–26.4)

Virginia 48.9 (46.7–50.9) 46.0 (43.0–48.9) 51.8 (48.9–54.7) 25.3 (23.3–27.5) 20.7 (18.0–23.4) 30.0 (27.4–32.4)

Washington 47.4 (45.6–49.2) 48.0 (45.7–50.3) 47.2 (44.9–49.5) 22.6 (20.9–24.4) 20.9 (18.6–23.2) 25.0 (23.0–27.2)

West Virginia 57.5 (55.6–59.4) 57.0 (54.2–59.6) 58.3 (55.8–61.0) 30.8 (28.7–32.8) 27.0 (24.1–29.9) 35.2 (32.5–37.9)

Wisconsin 50.3 (48.0–52.7) 50.3 (47.0–53.2) 50.7 (47.6–53.7) 25.5 (23.4–27.8) 23.1 (20.2–26.1) 28.6 (25.7–31.7)

Wyoming 48.2 (45.6–50.9) 45.5 (41.6–49.3) 51.3 (47.7–54.8) 22.4 (19.8–25.0) 19.2 (16.0–22.4) 26.1 (22.7–29.8)

* “Overall obesity” includes the body-mass index (BMI) categories of moderate obesity (BMI, 30 to <35) and severe obesity (BMI, ≥35).

Table 1. (Continued.)

Figure 2. Projected National Prevalence of BMI Categories in 2030, According to Demographic Subgroup.

Shown is the projected national prevalence of BMI categories in 2030, according to sex, race or ethnic group, and annual household income.

0 10 20 30 40 50 60 70 80 90 100

Prevalence (%)

Underweight or normal weight (BMI, <25)

Overweight (BMI, 25 to <30)

Moderate obesity (BMI, 30 to <35)

Severe obesity (BMI, ≥35)

Overall

Male

Female

Non-Hispanic white

Non-Hispanic black

Hispanic

Non-Hispanic other

<$20,000

$20,000 to <$50,000

≥$50,000

Annual Household Income

Race or Ethnic Group

Sex

21.5 (20.5−22.6)

17.9 (17.1−18.8)

19.8 (18.9−20.7)

37.9 (35.9−39.8)

17.1 (16.0−18.2)

17.5 (16.6−18.6)

21.7 (20.8−22.6)

23.5 (22.4−24.6)

19.4 (18.5−20.3)

21.4 (20.6−22.3)

31.4 (30.2−32.6)

27.7 (26.7−28.8)

24.6 (23.6−25.7)

31.7 (30.0−33.6)

30.5 (29.0−32.0)

25.6 (24.3−26.9)

30.2 (29.1−31.2)

26.6 (25.7−27.5)

32.5 (31.2−33.8)

29.7 (28.6−30.7)

25.6 (24.6−26.6)

25.8 (24.8−26.7)

23.9 (22.8−24.9)

16.8 (15.5−18.1)

27.9 (26.4−29.4)

25.2 (24.0−26.5)

24.7 (23.8−25.5)

22.3 (21.6−23.0)

27.1 (25.7−28.5)

24.8 (23.9−25.6)

21.5 (20.2−22.9)

28.6 (27.1−30.0)

31.7 (30.2−33.2)

13.7 (12.4−15.0)

24.5 (22.8−26.2)

31.7 (29.9−33.4)

23.4 (22.1−24.8)

27.6 (26.1−29.2)

21.1 (19.6−22.6)

24.2 (22.9−25.5)

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 20192448

T h e n e w e n g l a n d j o u r n a l o f m e d i c i n e

A Sex

B Race or Ethnic Group

C Annual Household Income

Male Female

Non-Hispanic White Non-Hispanic Black

Hispanic Non-Hispanic Other

<$20,000 $20,000 to <$50,000

≥$50,000 Overall

Underweight or normal weight (BMI, <25)

Overweight (BMI, 25 to <30)

Moderate obesity (BMI, 30 to <35)

Severe obesity (BMI, ≥35)

Suppressed estimate

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 2019 2449

Projec ted Pr e va lence of Obesit y a nd Se v er e Obesit y

dition, our findings suggest that it will soon be the most common BMI category in the patient populations of many health care providers. Given that health professionals are often poorly pre- pared to treat obesity,27 this impending burden of severe obesity and associated medical compli- cations has implications for medical practice and education. In addition to the profound health effects, such as increased rates of chronic dis- ease and negative consequences on life expec- tancy,25,28 the effect of weight stigma29 may have far-reaching implications for socioeconomic dis- parities as severe obesity becomes the most common BMI category among low-income adults in nearly every state.

Given the difficulty in achieving and main- taining meaningful weight loss,30,31 these find- ings highlight the importance of prevention ef- forts. Although some cost-effective prevention interventions have been identified,10 a range of sustained approaches to maintain a healthy weight over the life course, including policy and envi- ronmental interventions at the community level that address upstream social and cultural deter- minants of obesity,32 will probably be needed to prevent further weight gain across the BMI dis- tribution.

Our analysis has certain limitations. Although we found that our model predictions are accu- rate for states overall, our point estimates (i.e., mean predictions) may be less accurate for sub- groups with smaller sample sizes. However, our high coverage probabilities for all subgroups

indicate that we appropriately accounted for the uncertainty around our estimates, which high- lights the importance of considering the 95% confidence intervals of our projections as well. In addition, our assessment of predictive accu- racy reveals that our projections are robust to the change in the BRFSS sample design in 2011 to include cell-phone interviews. Although our predictive validity checks from 2010 through 2016 help build confidence in our approach, projec- tions through 2030 involve a much longer period, so the uncertainty around our projections may be larger than estimated because we assumed that current trends will continue.

Because of data limitations, we could not ex- plore trends in obesity according to all race or ethnic groups included in our “non-Hispanic other” category. We found large differences in the prevalence of obesity across states for this category, a finding that is consistent with the well-known differences in obesity prevalence among Native American, Native Hawaiian, and Asian populations that are included in this hetero- geneous category, which differs in composition from state to state. Also, because the BRFSS re- ports categories of annual household income (as opposed to actual dollar values), we were unable to adjust the household income of respondents for inflation over time.

Finally, because of the small sample size, we combined underweight (BMI, <18.5) and normal weight into one category. (Underweight com- prises only 2% of respondents in our NHANES data set.) Although this grouping may be prob- lematic when used as the reference category for estimating BMI-related health risks, it should not present any problems for estimating the prevalence of BMI categories.

We project that given current trends, nearly 1 in 2 U.S. adults will have obesity by 2030, and the prevalence will be higher than 50% in 29 states and not below 35% in any state — a level currently considered high. Furthermore, our pro- jections show that severe obesity will affect nearly 1 in 4 adults by 2030 and become the most common BMI category among women, black non- Hispanic adults, and low-income adults.

Supported by the JPB Foundation. Disclosure forms provided by the authors are available with

the full text of this article at NEJM.org.

Figure 3 (facing page). Projected Most Common BMI Category in 2030 in Each State, According to Demo- graphic Subgroup.

Shown is the projected most common BMI category (underweight or normal weight, overweight, moderate obesity, or severe obesity) in 2030 in each U.S. state, according to sex (Panel A), race or ethnic group (Panel B), and annual household income (Panel C). In accordance with the Centers for Disease Control and Prevention guidelines that consider Behavioral Risk Factor Surveil- lance System (BRFSS) survey estimates unreliable if they are based on a sample of fewer than 50 respon- dents,19 we suppressed state-level estimates from sub- groups with fewer than 1000 respondents; given our data set of 20 rounds of BRFSS surveys, we suppressed estimates from subgroups with fewer than 50 respon- dents on average per year in a state.

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

n engl j med 381;25 nejm.org December 19, 20192450

Projec ted Pr e va lence of Obesit y a nd Se v er e Obesit y

References 1. Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991-1998. JAMA 1999; 282: 1519-22. 2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014; 311: 806-14. 3. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obe- sity among adults in the United States, 2005 to 2014. JAMA 2016; 315: 2284-91. 4. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016. JAMA 2018; 319: 1723-5. 5. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and eco- nomic burden of the projected obesity trends in the USA and the UK. Lancet 2011; 378: 815-25. 6. Finkelstein EA, Khavjou OA, Thomp- son H, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med 2012; 42: 563-70. 7. Ward ZJ, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simula- tion of growth trajectories of childhood obesity into adulthood. N Engl J Med 2017; 377: 2145-53. 8. Ward ZJ, Long MW, Resch SC, et al. Redrawing the US obesity landscape: bias- corrected estimates of state-specific adult obesity prevalence. PLoS One 2016; 11(3): e0150735. 9. Wang YC, Pamplin J, Long MW, Ward ZJ, Gortmaker SL, Andreyeva T. Severe obesity in adults cost state Medicaid pro- grams nearly $8 billion in 2013. Health Aff (Millwood) 2015; 34: 1923-31. 10. Gortmaker SL, Wang YC, Long MW, et al. Three interventions that reduce child- hood obesity are projected to save more than they cost to implement. Health Aff (Millwood) 2015; 34: 1932-9. 11. Roberto CA, Lawman HG, LeVasseur MT, et al. Association of a beverage tax on sugar-sweetened and artificially sweetened beverages with changes in beverage prices

and sales at chain retailers in a large ur- ban setting. JAMA 2019; 321: 1799-810. 12. Silver LD, Ng SW, Ryan-Ibarra S, et al. Changes in prices, sales, consumer spend- ing, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: a before-and- after study. PLoS Med 2017; 14(4): e1002283. 13. State policies to prevent obesity. Prince- ton, NJ: Robert Wood Johnson Founda- tion (https://www .stateofobesity .org/ state – policy/ ). 14. Centers for Disease Control and Pre- vention. Behavioral Risk Factor Surveil- lance System: about BRFSS (https://www .cdc .gov/ brfss/ about/ index .htm). 15. Ezzati M, Martin H, Skjold S, Vander Hoorn S, Murray CJ. Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys. J R Soc Med 2006; 99: 250-7. 16. Connor Gorber S, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev 2007; 8: 307-26. 17. Centers for Disease Control and Pre- vention. National Health and Nutrition Ex- amination Survey: about NHANES (http:// www .cdc .gov/ nchs/ nhanes/ about_nhanes .htm). 18. Centers for Disease Control and Pre- vention. Overweight & obesity: defining adult obesity (https://www .cdc .gov/ obesity/ adult/ defining .html). 19. Klein RK, Proctor SE, Boudreault MA, Turczyn KM. Healthy People 2010 criteria for data suppression. Healthy People 2020 Stat Notes 2002; 24: 1-12 20. Wang Y, Beydoun MA, Liang L, Cabal- lero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) 2008; 16: 2323-30. 21. Sturm R, Hattori A. Morbid obesity rates continue to rise rapidly in the United States. Int J Obes (Lond) 2013; 37: 889-91. 22. Preston SH, Stokes A, Mehta NK, Cao B. Projecting the effect of changes in smok- ing and obesity on future life expectancy

in the United States. Demography 2014; 51: 27-49. 23. Hales CM, Fryar CD, Carroll MD, Freedman DS, Aoki Y, Ogden CL. Differ- ences in obesity prevalence by demo- graphic characteristics and urbanization level among adults in the United States, 2013-2016. JAMA 2018; 319: 2419-29. 24. Flegal KM, Ogden CL. Use of projec- tion analyses and obesity trends — reply. JAMA 2016; 316: 1317. 25. The Global BMI Mortality Collabora- tion. Body-mass index and all-cause mor- tality: individual-participant-data meta- analysis of 239 prospective studies in four continents. Lancet 2016; 388: 776-86. 26. Jannah N, Hild J, Gallagher C, Dietz W. Coverage for obesity prevention and treatment services: analysis of Medicaid and state employee health insurance pro- grams. Obesity (Silver Spring) 2018; 26: 1834-40. 27. Dietz WH, Baur LA, Hall K, et al. Management of obesity: improvement of health-care training and systems for pre- vention and care. Lancet 2015; 385: 2521- 33. 28. The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377: 13-27. 29. Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity (Sil- ver Spring) 2009; 17: 941-64. 30. Barte JC, ter Bogt NC, Bogers RP, et al. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes Rev 2010; 11: 899-906. 31. LeBlanc ES, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2018; 320: 1172-91. 32. Katan MB. Weight-loss diets for the prevention and treatment of obesity. N Engl J Med 2009; 360: 923-5. Copyright © 2019 Massachusetts Medical Society.

specialties and topics at nejm.org Specialty pages at the Journal’s website (NEJM.org) feature articles in cardiology, endocrinology, genetics, infectious disease, nephrology,

pediatrics, and many other medical specialties.

The New England Journal of Medicine Downloaded from nejm.org at Florida Atlantic University on January 21, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved

GET THE COMPLETED ASSIGNMENT

ASSIGNMENT COMPLETED AT CapitalEssayWriting.com

MAKE YOUR ORDER AND GET THE COMPLETED ORDER

CLICK HERE TO ORDER THIS PAPER AT CapitalEssayWriting.com ON  correct for self-reporting bias and to estimate state- specific and demographic subgroup–specific trends and projections of the preva- lence of categories of body-mass index (BMI)

NO PLAGIARISM, Get impressive Grades in Your Academic Work